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Abstract

Causality is a central concept in science and philosophy. With the ever increasing

amount and complexity of data being collected, statistics is playing a more and more

significant role in the inference of causes and e↵ects.

This thesis consists of three Parts. Part I reviews the necessary mathematical

languages so we can talk about causality. Three major approaches (by potential

outcomes in Chapter 2, by graphs in Chapter 3, and by functions in Chapter 4) are

described. They are in many senses equivalent or complementary to each other, and

excel in di↵erent causal tasks. Part II considers the statistical inference of a single

causal e↵ect in the potential outcome framework. Chapter 5 reviews state-of-the-art

matching and weighting methods. Chapter 6 proposes a new loss function tailored

for propensity score estimation, which can boost the performance of the weighting

methods. Chapter 7 reviews outcome regression and doubly robust inference and

provides some insight to selecting propensity score models and constructing confidence

intervals. Part III considers the statistical inference of multiple confounded e↵ects.

Chapter 8 introduces a confounding problem in linear model with latent variables.

Two examples are given, one in genetics and one in finance. Chapter 9 proposes a

twp-step procedure to adjust for the hidden confounding variables in high dimensional

data. Chapter 10 presents the performance of this method in simulations and the two

read data examples.
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Part I

MATHEMATICAL LANGUAGES

OF CAUSALITY
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Chapter 1

Introduction

Causality is one of oldest topics in philosophy and remains a staple in contemporary

science. Causality or causation connects one process (the cause) with another (the

e↵ect) and establishes the relationship that the first is (partly) responsible for the

second to happen. This concept is so fundamental that it is being used constantly

and often unconsciously. “We think we have knowledge of a thing only when we have

grasped its cause”, said Aristotle in the Posterior Analytics.

Philosophers (Aristotle, Hume, Mill, etc.) laid the foundation for causality. But

to use causality in our scientific studies on a daily basis, a formal mathematical

language is required. Today, probability theory (formalized in 1930s by Kolmogorov)

has become the dominant language in most disciplines that use causal modeling,

including economics, epidemiology, and social sciences (Pearl, 2009a, Imbens and

Rubin, 2015). Being the profession that applies probability theory to analyze data,

statisticians have made some of the most important contributions to causality in

the twentieth century. Fisher’s monumental 1935 book The Design of Experiments

recognized the indispensable place of randomization in experiments. Rubin and his

coauthors’ remarkable work in the 1970s and 1980s built a framework that allows us

to study causality from observational studies.

Unlike randomized experiments, the second movement of causal inference using ob-

servational studies encountered substantial resistance inside the statistics community.

Historically, although Fisher’s argument against the causal relationship of smoking

2



CHAPTER 1. INTRODUCTION 3

and lung cancer in the 1950s is now regarded erroneous, his concern about uncon-

trolled observational studies is certainly not dismissed. This dissertation takes a prag-

matic empiricism position: since so many observational studies have already proved

their ability of finding causation (Rosenbaum, 2002), I believe the studies and the

statistical methods definitely have tremendous value. This view is extremely helpful

as the ever-exploding data availability (mostly observational) is pushing statistics to

an era of “big data”. However, great deal of caution is vital in analyzing these obser-

vational datasets. Researchers must fully understand the assumptions and limitations

of the statistical methods, otherwise enormous mistakes can be made.

Due to its vicinity to contemporary philosophy and science, causality has received

some of the most fierce discussion in statistical journals. There are mainly two lasting

debates:

1. Can we use observational studies to learn causal relationships?

2. What mathematical language (or model) should we use to study causality?

The two questions are of course related, but the discussants are often quite di↵erent.

Next, we shall turn our attention to the article “Causal Inference Without Coun-

terfactuals” by Dawid (2000) and the discussion therein by Cox, Casella and Schwartz,

Pearl, Robins and Greenland, Rubin, Shafer, and Wasserman. The long list of discus-

sants include most of the important figures that have shaped the current landscape of

causal inference. It is interesting that they (all the discussants excluding Shafer and

perhaps Cox) seemed to reach a consensus facing Dawid’s argument against the usage

of counterfactuals in causal inference (a negative answer to question 1), but clashed

heavily on question 2 in other debates, most noticeably between Pearl (2009b) and

Rubin (2009).

A. P. Dawid is a renowned theoretical statistician who accomplished “path-breaking

work on predictive probability”, quoted from Glenn Shafer’s comment. By examining

his long publication list, it seems that Dawid did not work directly on causal inference

prior to 2000. That makes his 2000 paper very intriguing and special—a respectful

decision theorist took a stand against the use of counterfactuals, which are at the very

core of causal inference. The article and all the comments really took the discussion
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of causality in statistics to a very advanced level, making it a perfect start for this

dissertation.

Three levels of questions

Holland (1986), Dawid (2000), and Pearl (2009a) all suggest we should distinguish

between the following three types of questions:

Associational: How many people take aspirin when they have a headache?

Interventional (e↵ects of causes): “I have a headache. Will it help if I take as-

pirin?”

Counterfactual (causes of e↵ects): “My headache has gone. Is it because I took

aspirin?”

Notice that the first question is non-causal and does not appear in Holland (1986) or

Dawid (2000). I add it to the list in order to distinguish associational inference from

causal inference.

Classical statistics champion the first task. Take regression for example, we ob-

serve predictors X and responses Y and wish to infer the conditional distribution of

Y given X. Commonly, we can embed the conditional distribution in a parametric

family P(Y |X) = P
✓

(Y |X) and use the likelihood principle to infer the parameter ✓.

A typical example is the (Gaussian) linear regression:

P
�,�

(Y |X) / exp

(
�(y � �Tx)2

2�2

)
. (1.1)

This type of inference is most useful to make predictions, where the probability dis-

tribution is assumed unchanged in the future. New statistical methods, such as the

statistical learning algorithms described in Hastie et al. (2009) and the Bayesian

methods used by Nate Silver to correctly predict U.S. 2012 election, have pushed the

associational inference to a new level of sophistication.
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But association does not imply causation, as warned by every instructor in their

first class on regression. One of the most famous examples is a graph correlating

global warming with the decline in the number of pirates.1 Of course neither of them

is the cause of the other. The real question is, can we use statistics to answer the

causal questions (the interventional and counterfactual questions)?

Statisticians have mixed opinions about this, that is why Dawid (2000) decided

to adopt the popular counterfactual language of causality to see how far he can get.

Consider a large homogeneous population U , to each of which we can choose to

apply any one treatment out of T = 0, 1 and observe the resulting response Y . The

counterfactual approach focuses on the collection of potential outcomes {Y
u

(i) : i 2
T , u 2 U}, where Y

u

(i) denotes “the response that would be observed if treatment i

were assigned to unit u”. Note that, for any unit u, one can observe Y
u

(i) for at most

one treatment i. This is referred to as “the fundamental problem of causal inference”

by Holland (1986).

One of the main concerns of Dawid (2000) is: should we or is it necessary to im-

pose assumptions on the joint distribution of the potential outcomes Y (0) and Y (1),

even if they are never jointly observed? The reader can bear this question in mind

when reading the rest of this Part. Personally, I believe, after reading Richardson and

Robins (2013), that the cross-world independencies are unnecessary to answer inter-

ventional queries and some counterfactual queries (as long as all the counterfactuals

are in the same world). See Sections 3.3 and 4.3 for some discussion.

The rest of this Part describes three major mathematical languages designed to

answer the “e↵ects of causes” and “causes of e↵ects” questions. The mathemat-

ical models are the basis of my doctoral research in Parts II and III. Personally, I

agree with Lauritzen (2004)’s view that “di↵erent formalisms of causality are di↵erent

‘languages’ ”, and “I have no di�culty accepting that potential responses, structural

equations, and graphical models coexist as languages expressing causal concepts each

with their virtues and vices.” So I will try to maintain an objective attitude when

introducing these languages.

1To see the graph, visit this webpage http://www.venganza.org/about/open-letter/.

http://www.venganza.org/about/open-letter/


Chapter 2

The Potential Outcome Approach

Among the causal languages described in Part I of this dissertation, potential outcome

is perhaps the most widely adopted approach by applied researchers. The potential

outcome language is generally attributed to Donald Rubin’s work in 1970s, though

Rubin (1990) himself thinks Neyman (1923) first used this language in randomized

experiments. Due to this reason, this approach is commonly called the Rubin causal

model or the Neyman-Rubin causal model. This Chapter first describes the math-

ematical model in Neyman (1923) and then discusses how that is related to the

potential outcome language we use nowadays.

2.1 Neyman’s model

In a Section of his doctoral thesis, Neyman (1923) studies agricultural field experi-

ments with m plots and v varieties of crops. He begins with the notation that u
ik

is the potential yield of the ith variety on the kth plot and then considers an urn

model (sampling with replacement) to apply the varieties. This is equivalent to the

randomized experiment with m/v plots exposed to each variety. Letting X
i

be the

sample mean of the n plots actually exposed to the i-th variety, Neyman shows that

E[X
i

�X
j

|u] = 1

m

mX

k=1

u
ik

� 1

m

mX

k=1

u
jk

,

6



CHAPTER 2. THE POTENTIAL OUTCOME APPROACH 7

and he also computes the variance of X
i

�X
j

given u. Notice that the entire random-

ness of this hypothetical procedure comes from the random assignment (Neyman’s

urn model). The potential outcomes u
ik

are assumed fixed. Interestingly, Neyman

himself only considers this as a theoretical treatment and “the randomization was

considered as a prerequisite to probabilistic treatment of the results” (Reid, 1982).

He attributes the physically randomized experiments to Fisher and his followers.

Neyman’s thesis was originally written in Polish and translated to English in 1990

by Dabrowska and Speed. Rubin (1990) provided some historic comments on the

development of the potential outcome approach. According to Rubin (1990), “Ney-

man’s notation seems to have formalized ideas that were relatively firmly in the minds

of some experimenters, philosophers and scientists [including Fisher] prior to 1923”.

After Neyman (1923) and before Rubin’s introduction of potential outcomes to obser-

vational studies, the standard approach used one variable to represent the observed

outcome and an indicator to represent treatment assignment. This notation with-

out counterfactuals limits the ability of applying statistical methods to observational

studies.

2.2 Rubin’s model

We now turn to Rubin’s causal model of observational studies. Motivated by edu-

cational researches, Rubin (1974) argued that “the use of carefully controlled non-

randomized data to estimate causal e↵ects is a reasonable and necessary procedure

in many cases”. Quite naturally and without referring to Neyman’s work half a cen-

tury ago, Rubin (1974) used the potential outcomes to define the causal e↵ect of an

educational treatment. This language clearly links observational studies to the more

general “missing data” problem (Rubin, 1976, 1977).

In Rubin’s view, the most important quantity about observational studies is the

treatment assignment mechanism. Let T
i

2 {0, 1} indicate the assignment for unit

i, where 1 implies the active treatment and 0 implies the control. Let X
i

be some

pretreatment covariates of unit i and Y
i

(0) and Y
i

(1) be the potential outcomes.

Finally let T , X, Y (0), Y (1) be the vectors (or matrices) of the individual-level
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values. The assignment mechanism can be written as

P(T |X, Y (0), Y (1)).

Rubin (2011) regards T as the only random variable and considers the other values

(called “science” by Rubin) fixed, though he also allows a Bayesian framework that

models the science. Rubin (1978) pointed out that all randomized experiments share

a critical property called “ignorable”,

P(T |X, Y (0), Y (1)) = P(T |X, Y ). (2.1)

Under this assumption, it is justifiable to “ignore” the missing values (unobserved po-

tential outcomes). Here Y = (Y1, . . . , Yn

) and Y
i

= T
i

Y
i

(1)+(1�T
i

)Y
i

(0). A stronger

and theoretically more convenient assumption is “strongly ignorable” (Rosenbaum

and Rubin, 1983) or “unconfounded”,

P(T |X, Y (0), Y (1)) = P(T |X). (2.2)

Sequentially experiments were described with (2.1), whereas classical randomized

experiments were described with (2.2) (Rubin, 2011). Another important property of

randomized experiment is that the assignment probability is between 0 and 1,

0 < P(T |X, Y ) < 1, or 0 < P(T |X) < 1. (2.3)

Intuitively this says every unit has a positive chance of being assigned to treatment

or control. In the context of observational studies, (2.3) is also called the overlap

assumption.

One of the fundamental benefits of adopting a counterfactual language is that it

allows easy definition of causal e↵ect. This is the interventional question described

in Chapter 1 (e↵ects of causes). The individual causal e↵ect can be represented as

Y
i

(1)�Y
i

(0). Holland (1986) would say the treatment causes the e↵ect Y
i

(1)�Y
i

(0).

However, this individual treatment e↵ect is never observable. In many cases (actually
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most of the traditional observation studies), the quantity of interest (estimand) is the

average treatment e↵ect (ATE),

⌧ATE =
1

n

nX

i=1

Y
i

(1)� Y
i

(0), (2.4)

or its variants, such as the average treatment e↵ect on the treated (ATT),

⌧ATT = E

2

4 1

n1

X

T

i

=1

Y
i

(1)� Y
i

(0)

3

5 , n1 = #{1  i  n : T
i

= 1}. (2.5)

The expectation in (2.5) is taken over the treatment assignment, since that is the

only random quantity in Rubin’s potential outcome framework.

In the definitions above, selecting units occurs before the treatment assignment so

the the estimands in (2.4) and (2.5) are defined with respect to the fixed n units. It is

often more practical to view the n units as random samples from a large population.

Theoretically, it is more convenient to assume the population is infinite, so the units

are i.i.d. draws. Taking this perspective, we can define the estimands as

⌧ATE = E[Y (1)� Y (0)], ⌧ATT = E[Y (1)� Y (0)|T = 1]. (2.6)

In (2.6), the expectations are taken over the joint distribution of (T, Y (1), Y (0)),

or in other words over a random draw from the infinite population and a random

treatment assignment. By adopting this view, we also implicitly assumed the stable

unit treatment value assumption (SUTVA) of Rubin (1980), which roughly says there

is no interference between units.

Of course we do not know if ignorability (2.1) or strong ignorability (2.2) is true

for an observational study. But what can be said if we are willing to assume those

conditions? This shall be discussed in Part II of the dissertation.
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2.3 Criticisms

Dawid (2000) made several criticisms against the usage of potential outcomes in causal

inference.

2.3.1 Metaphysical and untestable assumptions

Dawid (2000) views the existence of the potential outcomes (u in Neyman’s model

and (Y (0), Y (1)) in Rubin’s model) as metaphysical and unjustified. To Dawid, the

first concerning fact is that the inference (more specifically, the variance) of ⌧ATE in-

deed depends on the model we use. This disobeys the principle that “mathematically

distinct models that cannot be distinguished on the basis of empirical observation

should lead to indistinguishable inferences”, what Dawid (2000) calls Je↵erey’s law.

Then Dawid (2000) turns to the constant treatment e↵ect assumption that is com-

monly imposed in causal inference. To Dawid, this is a untestable and dangerous

assumption.

Dawid (2000) summarizes his criticisms by classifying causal analyses into sheep

(those who obey Je↵erey’s law) and goats (the rest). In his opinion, the inference

based on randomized experiments and decision theory is a sheep, and the potential

outcome approach has the potential to generate goats. But unlike the discussion

by Shafer (2000), Dawid (2000) holds a more neutral attitude towards to usage of

potential outcome. He admits that “specific inferential uses of counterfactual models

may turn out to be sheep”.

2.3.2 Fatalism

A even harsher criticism of Dawid (2000) is that many counterfactual analyses are

based on an attitude he terms fatalism. This considers the various potential responses

Y
i

(t) as predetermined attributes of unit i, waiting only to be uncovered by suitable

experimentation. One example of fatalism that Dawid (2000) gives is the counterfac-

tual analyses of treatment non-compliance in Imbens and Rubin (1997), where each

patient is supposed categorizable as a complier, a defier, an always taker, or a never
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taker. Complier means the person who would take the treatment if prescribed, and

not take it if not prescribed. Other categories can be defined in a similar manner.

Dawid (2000, Section 7.1) argues that “it is only under the unrealistic assumption of

fatalism that this group has any meaningful identity, and thus only in this case could

such inferences even begin to have any useful content”.

This fatalistic worldview is of course dangerous, but as argued by Casella and

Schwartz (2000) in the comment, it is perhaps a “straw man” view that very few

statisticians hold. A possible reason of this hollow attack is that cross-world assump-

tions may look like fatalistic. For example, if we use P 2 {0, 1} to indicate the

prescription, T (p) 2 {0, 1} to indicate taking the prescription and Y (p, t) to indicate

the potential outcome, then the average treatment e↵ect for compliers (one version)

can be defined as E[Y (1, 1) � Y (0, 0)|T (0) = 0, T (1) = 1]. Of course we can never

observe T (0) and T (1) together, but this usage of potential outcome is not fatalistic

and should in fact belong to the metaphysical criticism.

2.3.3 Determinism

Dawid (2000) explains the popularity of counterfactual models by an implicit view

that all problems of causal inference can be cast in the deterministic paradigm, which

he believes is only rarely appropriate. This point is further discussed in Section 4.1

and an alternative view based on predictability is described in Section 4.3. Deter-

minism is deeply connected with our understanding of the physical sciences and their

explanatory ambitions, on the one hand, and with our views about human free action

on the other. Currently, there is no agreement over whether determinism is true or

even whether it can be known true or false (Hoefer, 2016).



Chapter 3

The Graphical Approach

This Chapter is based on Spirtes et al. (2000), Pearl (2009a, Chapters 2, 3) (1st

edition in 2000), and Koller and Friedman (2009, Chapters 3, 21).

3.1 Conditional dependence and Bayesian network

Although it is natural for humans to interpret causality by a graph (represent “X

causes Y ” by an arrow from X to Y ), the formal graphical approach was first de-

veloped to describe associational knowledge rather than causal knowledge. We shall

first briefly review the representation of conditional dependence by a graph—Bayesian

network.

Suppose we have a joint distribution P over some set of random variables X =

(X1, . . . , Xd

). The core of the Bayesian network representation is a directed acyclic

graph (DAG) G, whose nodes are the random variables in X. This graph G can

be viewed in two very di↵erent but indeed equivalent ways (Koller and Friedman,

2009, Section 3.2): first, G provides the skeleton for a way of factorizing the joint

distribution; second, it represents a set of conditional independence assumptions.

Let’s define the Bayesian network in the first way. Let PaG(Xi

) be the parents of

12
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X
i

in graph G. A Bayesian network is a pair (G, P ) such that P factorizes over G, i.e.

P (X1, . . . , Xd

) =
dY

j=1

P (X
i

|PaG(Xi

)).

Next we turn to the second representation. Let I(P ) denote the set of condi-

tional independence relationships of the form X ?? Y |Z in P (X, Y , and Z can

be multivariate). Further denote I
l

(G) be the local independence relationships in G:
I
l

(G) = �X ?? non-descendants of X
�� paG(X)

 
. Then P factorizes over G if and only

if I
l

(G) ✓ I(P ).

Given this equivalence, the natural question is: what is I(G), the set of all (not just
local) conditional independence relationships for all P that factorize over G? This can

be understood using the ideas of active path and active vertex on a path. Intuitively,

a path is active if it carries information or dependence. Two variables X and Y might

be connected by lots of paths in G, where all, some, or none of the paths are active.

The variables X and Y are called d-separated by another set of variables Z, if all the

active paths connecting them are blocked by some variable in Z. To understand what

active path means, consider all the possible undirected path between X and Y that

go through a third variable Z:

1. X ! Z ! Y or X  Z  Y : this is called a chain or causal trail. It is active

if and only if Z is not included.

2. X  Z ! Y : this is called a fork or common cause. It is active if and only if

Z is not included.

3. X ! Z  Y : this is called a collider or common e↵ect. It is active if and only

if Z is included.

This definition can be further generalized to multivariate X and Y by asking Z to

deactivate all the trails connecting one variable in X with another variable in Y .

Now we can call I(G) to be all the independencies that correspond to d-separation:

I(G) =
�
(X ?? Y |Z) : X and Y is d-separated by Z

 
. Notice that at this point

I(G) is solely determined by the graph G and we have not yet linked it to the
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distribution P . The connection is elegant: whenever P factorizes over G, we have

I(G) ✓ I(P ). The converse of this result is not always true. When it is true, i.e. all

the conditional independencies of P can be read from d-separations in G, the distri-

bution P is called faithful to G. With probability 1, a distribution factorizes over G
is faithful to G (see Spirtes et al., 2000). Uhler et al. (2013) studied the geometry of

the faithfulness assumption and suggested that due to sampling error the faithfulness

condition alone is not su�cient for statistical estimation.

3.2 Causal Bayesian network

So far we are just using the graphical structure to represent a probability distribution,

i.e. storing associational knowledge. This correspondence is elegant, but an important

question remaining to be answer is which graph we should use for a given distribution.

For example, the complete graph always provide a factorization for any distribution,

but it does not reveal any of the conditional independence structure in the distri-

bution. A “good” Bayesian network structure should be sparser, more natural, and

robust to changes such as adding or removing a variable.

A causal Bayesian network represents or tries to represent a stable and autonomous

physical mechanism. It allows us to predict the e↵ect of interventions (interfering in

the natural course of events). This is much more informative than probabilistic models

because the network also stores causal knowledge, allowing us to answer the second

question in Chapter 1.

Intuitively, we want to represent a interventional distribution by a subgraph that

deletes all the arrows pointing to the intervention node(s). Formally, a (discrete) prob-

ability distribution P is assumed to have many interventional distributions Pdo(X=x).

The interventional distributions must be compatible with the original distribution, in

the sense that Pdo(X=x)(Y = y) = 1 if Y 2 X and Y = y is consistent with X = x,

and Pdo(X=x)(Y = y | paG(Y )) = z = P (Y = y | paG(Y ) = z) whenever paG(Y ) = z is

consistent with X = x. A DAG G is said to be causal Bayesian network compatible

with P and its compatible interventional distributions if all Pdo(X=x) factorize over G.
The main benefit of using a causal Bayesian network is that it gives a e�cient
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representation of P and all its vast interventional distributions. Let V be all the

random variables and we can factorize every Pdo(X=x) over the edge-deleted subgraph

G
x

= Gdo(X=x) by treating X = x as given:

Pdo(X=x)(V = v) =
Y

i

:
V

i

62X
P (V

i

= v
i

|paG(Vi

) = vpaG(Vi

))

=
Y

i

:
V

i

62X
P (V

i

= v
i

|paG
x

(V
i

) = vpaG
x

(V
i

), X = x), if X = x is consistent with V = v.

This also implies two properties which match our intuition: P(X|paG(X)) = P
do(paG(X))(X),

and P
do(paG(X),Y )(X) does not depend on Y that is disjoint of X and paG(X).

We have laid out the causal Bayesian network in a very condensed way. More

detail about this approach can be found in Pearl (2009a).

3.3 Graphical identification of causal e↵ect

Besides its easy visual representation of causality, what are the other reasons to use

the graphical approach? Recall that one of the main goals of causal inference is to

establish causal relationships from observational studies. In the potential outcome

approach described in Chapter 2, this relies on the ignorability assumption (2.1) that

is empirically untestable. In contrast, the causal Bayesian network provides a more

structured way to choose the variables appropriate for adjustment.

Suppose we are given a causal diagram G and observational data on a subset of

the variables V in G. Our goal is to estimate the causal e↵ect of T on Y . This is

the second level question (e↵ects of causes) in Chapter 1. Before estimation, one

question that must be answered is: is this causal e↵ect identifiable? In other words,

do there exist two distributions P and P (and their interventional distributions)

that are compatible with G and have the same marginal distributions of V , yet the

interventional distributions Pdo(T=t)(Y ) and P 0
do(T=t)(Y ) are di↵erent?

Pearl (1993) first gave the graphical criterion for the strong ignorability assump-

tion (2.2) due to Rosenbaum and Rubin (1983). This graphical criterion is called the

back-door criterion, meaning X blocks all the “back-door” trails of T to Y . Formally,
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this means that no variable in X is a descendant of T , and X blocks every undirected

trail between T and Y that contains an arrow into T . If X satisfies the back-door

criterion relative to T and Y , then the interventional distribution is given by

Pdo(T=t)(Y ) =
X

x

P (Y |T,X = x)P (X = x)

=
X

x

P (X = x, T, Y )

P (T |X = x)

The second formula is called “inverse probability weighting” (see Section 5.4) which

makes use of the treatment assignment mechanism (propensity score) P (T |X = x)

that is crucial in the potential-outcome analysis.

Putting it in the bigger picture, the back-door condition generalizes the strong

ignorability condition (2.2). Recall that strong ignorability says that given X, the

value that Y would obtain had the treatment T been t is independent of T . Vaguely

speaking, if the counterfactual Y (t) can be represented by the edge-deleted subgraph

Gdo(X=x), this statement amounts to saying Y (t) and T are d-separated by X in the

subgraph Gdo(X=x). However, this reasoning is not quite rigorous as the subgraph

Gdo(X=x) does not contain any node corresponding to the counterfactual variable.

This issue is solved in Richardson and Robins (2013) by changing the formulation

of Gdo(T=t). In their single world intervention graph, Gdo(T=t) is obtained by, instead

of deleting incoming edges, splitting the node T into two halfs. One half (call it

T ) inherits the incoming edges of X in G, another half (call it t = 0 for example)

inherits the outgoing edges of X in G, and the two half nodes are not connected. All

the descendants Y of T in G now become counterfactual variables Y (t = 0), as they

are descendants of the half node t = 0 in the new graph Gdo(T=t). The conditional

independencies involving counterfactuals can be read from the new Gdo(T=t) via d-

separation. The back-door criterion is a special case of this approach.

The back-door condition reflects the common advise that the covariates should

be una↵ected by the treatment. However, this is not necessary. Pearl (1995) gives

the front-door criterion, in which the adjustment variables X can be the descendants

of T . This approach essentially uses the backdoor criterion twice, first computes the
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causal e↵ect of T on X and then computes the causal e↵ect of X on Y . Based on

these two criteria, Pearl (1995) derived a system of rules, called causal calculus, to

determine the identifiability of a general interventional distribution given the causal

diagram G. See Pearl (2009a, Sections 3.3–3.4) for more detail.



Chapter 4

The Functional Approach

4.1 Laplacian determinism

The functional approach originates from Laplace’s demon or Laplacian determinism

in the history of science. Laplace (1814) presented the following articulation of causal

or scientific determinism:

We may regard the present state of the universe as the e↵ect of its past

and the cause of its future. An intellect which at a certain moment would

know all forces that set nature in motion, and all positions of all items

of which nature is composed, if this intellect were also vast enough to

submit these data to analysis, it would embrace in a single formula the

movements of the greatest bodies of the universe and those of the tiniest

atom; for such an intellect nothing would be uncertain and the future just

like the past would be present before its eyes.

To Laplace, the whole universe can be described by all its atoms (variables) and the

physical laws (functions).

Pearl (2000) provides the following interpretation of Laplacian determinism: “The

essence of any scientific law lies in the claim that certain relationships among observ-

able variables remain invariant when the values of those variables change relative to

our immediate observations.” Pearl (2000) elaborates on this point with the following

18
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example:

For example, Ohm’s law (V = IR) asserts that the ratio between the

current (I) and the voltage (V ) across a resistor remains constant for

all values of I, including yet-unobserved values of I. We usually express

this claim in a function or a hypothetical sentence: ”Had the current in

the resistor been I (instead of the observed value I0) the voltage would

have been V = I(V0/I0),” knowing perfectly well that there is no way to

simultaneously measure I and I0.

Building on his work of causal diagrams (see Chapter 3), Pearl (2009a, Chapter

5) suggests a quasi-deterministic functional language to describe causality. Pearl’s

nonparametric structural equation model (SEM) assumes that every node (random

variable) X in the graph G can be written as a function of its parents and noise

X = f
X

(paG(X), ✏
X

). (4.1)

In most cases, Pearl assumes the noise variables ✏
X

are mutually independent. Pearl

(2000) views (4.1) as an approximation of Laplace’s conception of nature: “random-

ness surfaces merely due to our ignorance of the underlying boundary conditions”.

Structural model is a synonym of functional model. Let’s consider the following

linear structural equation model (Wright, 1934) which is a special case of (4.1): for

a graph G with nodes X1, . . . , Xd

,

X
i

=
X

j2paG(Xi

)

↵
ij

X
j

+ ✏
i

. (4.2)

The word structural is used to emphasize that the equation (4.2) is di↵erent from a

linear regression, in the sense that (4.2) also predicts interventional settings. There-

fore, a unit (interventional) change of X
j

for some j 2 paG(Xi

) from X
j

= x
j

to

X
j

= x
j

+ 1 will result in the same increase of X
i

as a unit change from X
j

= x0
j

to

X
j

= x0
j

+ 1. Also, once we hold paG(Xi

) as constant, changing all other variables

in the model will not a↵ect X
i

. The same interpretation holds for the Ohm’s law (a

nonparametric SEM).
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I want to make several remarks about Laplacian determinism and structural mod-

els. First, SEMs are widely used in many scientific disciplines, including genetics,

economics, epidemiology, and education. Criticisms of SEM exist from its first pro-

posal (Wright, 1921) and last till today. Bollen and Pearl (2013) argue that much of

the controversy is due to misunderstanding.

Second, determinism is fundamentally connected to the objectivity of probability.

If our world is truly deterministic, some philosophers argue that there is no room

for objective probability. Third, determinism is also di↵erent from predictability, a

concept that statisticians are more used to. Hoefer (2016) gives a fantastic discussion

on this:

Laplace probably had God in mind as the powerful intelligence to whose

gaze the whole future is open. If not, he should have: 19th and 20th cen-

tury mathematical studies showed convincingly that neither a finite, nor

an infinite but embedded-in-the-world intelligence can have the comput-

ing power necessary to predict the actual future, in any world remotely

like ours. But even if our aim is only to predict a well-defined subsys-

tem of the world, for a limited period of time, this may be impossible for

any reasonable finite agent embedded in the world, as many studies of

chaos (sensitive dependence on initial conditions) show. Conversely, cer-

tain parts of the world could be highly predictable, in some senses, without

the world being deterministic. When it comes to predictability of future

events by humans or other finite agents in the world, then, predictability

and determinism are simply not logically connected at all.

We will go back to this point later in Section 4.3.

4.2 Functional model and counterfactuals

At first glance, the functional approach, for example the nonparametric SEM in (4.1),

may look very di↵erent from the counterfactual approach described in Chapter 2.

However, the two approaches are indeed equivalent in a strong sense.
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One of the motives when Pearl developed nonparametric SEM is to represent the

imaginative counterfactuals in terms of mathematical expressions. If we assume the

model (4.1) for variables T , X (treating as exogenous), and Y , i.e.

T = f(X, ✏
T

), Y = g(T,X, ✏
Y

),

then we can express the counterfactual Y (0) as g(0, X, ✏
Y

) and Y (1) as g(1, X, ✏
Y

),

two random variables well-defined in the model. To check conditional independence

for counterfactual variables, Balke and Pearl (1994) developed an approach called

the twin network, which augments the original graph G with its counterfactuals and

connect the two counterparts through the common noise variables. Conditional inde-

pendence of counterfactuals can be read from the twin network via d-separation.

Richardson and Robins (2013, Section 4.2.3) presents an example where the twin

network method fails. Richardson and Robins (2013) propose to use d-separation

in their single-world intervention graphs to check counterfactual queries. Instead of

doubling the original graph, they rely on a node-splitting operation described in Sec-

tion 3.3. Counterfactuals are now represented by variables in the intervention graph.

They also show that Pearl’s functional representation of counterfactuals assume many

more cross-world independence assumptions (which are empirically unverifiable) than

what is necessary (just single-world independence assumptions).

So far we have not talked about statistical inference of causal models. Recall

that there are two di↵erent types of causal queries in Chapter 1: “e↵ects of causes”

and “causes of e↵ects”. As discussed earlier, the three mathematical languages de-

scribed in Chapters 2 to 4 are essentially equivalent to each other. Nevertheless, some

language is more powerful and convenient in answering certain questions:

1. Potential outcomes are designed to describe “e↵ects of causes”. In fact, Holland

(1986) said that “...an emphasis on the e↵ects of causes rather than on the

causes of e↵ects is, in itself, an important consequence of bringing statistical

reasoning to bear on the analysis of causation...”. In the same article, Holland

also argues that only variables with “potential exposability” can be a cause. If

we inspect this statement today, this view is rather narrow and is largely due to
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the limitation of the potential outcome language. However, there is not reason

to dismiss this approach due to the limitation. In fact, the entire Part II of this

dissertation is devoted to the potential outcome approach, as it is still the most

convenient language for “e↵ects of causes”.

2. The functional approach handles large and complex causal networks the best.

Statistical inference is also tractable: in principle, one can use maximum likeli-

hood or method of moments to solve structural equation models like (4.1) and

(4.2). Numerous methods are developed to test the goodness of fit and implica-

tions of SEMs (see Bollen, 2014). With the estimated functions, it is also more

convenient to plan for interventions optimally.

3. The graphical approach is by far the clearest and the most concise way of

summarizing causal knowledge. It allows easy interpretation of causal mod-

els and identification of causal e↵ects. However, the statistical inference of

causal Bayesian network is not straightforward. The next subsection describes

a recently proposed approach to infer the causal diagram by using data from

multiple interventional settings.

4.3 Invariant causal prediction

As noticed by Dawid (2000) in his rejoinder, “all of the discussants [of his paper]

except Shafer and Robins and Greenland seem to be out-and-out Laplacian deter-

minists, for who nothing short of a functional model relating outputs to inputs will

do as a description of nature”. Adopters of this functional model such as (4.1) or

(4.2) are surely determinists. How about people who use potential outcomes?

The answer is not obvious. Consider the strong ignorability (2.2) that is com-

monly assumed. It contains the joint distribution of the potential outcomes Y (0) and

Y (1), which are never observed under any experimental setting. However, the causal

targets such as E[Y (1)] and E[Y (0)] are identifiable if we assume marginally Y (0)

and Y (1) are independent of T conditional on X. Borrowing terms from Richardson
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and Robins (2013), this means many potential-outcome adopters assume extra cross-

world independence assumptions. It seems to me that this is a consequence of being

a determinist.

One advantage of determinism is that the statistical inference is more convenient.

To fit a functional model like (4.1) or (4.2), one only needs to postulate the function

forms and noise distributions and apply standard statistical tools (e.g. maximum

likelihood).

A natural question after Dawid’s observation is: Can we talk about causality

without being a Laplacian determinist? To clarify, “taking about causality” means

to answer the interventional (e↵ects of causes) and counterfactual (causes of e↵ects)

questions in Chapter 1. This is an important question because many statisticians1

and scientists do not believe in this philosophy.

Recently, Peters et al. (2015) propose an alternative approach that can potentially

allow the disbelievers of determinism to work on causality. This approach views

causality as invariant prediction under di↵erent environments. An environment can

be the observational distribution or any interventional setting. In this definition,

causality is a consequence of predictability instead of determinism. As discussed

earlier in Section 4.1, predictability and determinism are di↵erent concepts and not

logically connected.

Peters et al. (2015) consider the setting where we have di↵erent experimental

conditions e 2 E and have i.i.d. sample of (Xe, Y e) in each environment. Peters et al.

(2015) are interested in discovering the subset S⇤ of variables in X that can “causally”

predict Y , in the sense that Y e|Xe

S⇤ and Y f |Xf

S⇤ are identical for all environments

e, f 2 E . When Y e|Xe

S⇤ satisfies the linear structural equation model (4.2), they

provide identification conditions and a systematic procedure to infer this set from

empirical data.

Once the causal parents of Y are found, they can be used to answer the causal

queries. For interventional queries, Peters et al. (2015) give confidence intervals of

the structural coe�cients. For counterfactual queries, the answer is also immediate

from the estimated prediction formula. Notice that some modularity assumptions are

1For example my Ph.D. advisor, Trevor Hastie, said determinism is “a little nutty” to him.
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necessary to extend the discovery to an environment e0 62 E and additional indepen-

dency assumptions are necessary to answer queries with cross-world counterfactuals.

Both points are not adequately discussed in the Peters et al. (2015) paper.



Part II

INFERRING A SINGLE EFFECT
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Chapter 5

Matching and Weighting

5.1 Raw matching

Historically, randomized experiments (e.g. Fisher, 1935) are studied before observa-

tional studies. The apparent benefit of a randomized experiment is that all pretreat-

ment covariates, observed or unobserved, are always stochastically balanced. If the

outcomes of treatment and control populations are di↵erent, the only possible cause

is the treatment itself. This isolates the treatment e↵ect and allows us to use stan-

dard inference tools in statistics. In observational studies, the stochastic covariate

balance in general does not hold. For example, patients in worse condition may be

more likely to choose certain treatment, making that treatment look worse than the

others. Simply ignoring this fact can lead to significant confounding bias.

Due to this reason, it is often desirable to mimic a randomized experiment using

observational data. In randomized experiments, one of the most common design

technique is blocking to remove the e↵ect of nuisance factors. This motivates the raw

matching methods described in this Section. The term “raw matching” means that

these methods only use the raw pretreatment covariates and do not attempt to model

the assignment mechanism (the propensity score).

Any matching algorithm must first specify a distance metric d on the covariates.

26
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One example is exact matching:

d(X
i

, X
j

) =

8
><

>:

0, if X
i

= X
j

,

1, if X
i

6= X
j

.

In other words, two units are matched only if they have exactly the same covariates.

This is often too stringent. In practice, a widely used metric is the Mahalanobis

distance:

d(X
i

, X
j

) =
q

(X
i

�X
j

)T⌃�1(X
i

�X
j

).

If the estimand is ATT, ⌃ is the covariance matrix of X in the control group; if

the estimand is ATE, ⌃ is chosen to be the variance matrix in the pooled treatment

and control groups. This distance metric is motivated by the multivariate normal

distribution. The Mahalanobis distance can also be generalized with additional weight

parameter W (Diamond and Sekhon, 2013a). Formally,

d(X
i

, X
j

) =

r
(X

i

�X
j

)T
⇣
⌃� 1

2

⌘
T

W⌃� 1
2 (X

i

�X
j

). (5.1)

Once the distance metric d is selected, we can apply a matching algorithm. One of

the most common, and easiest to implement and understand, methods is k : 1 nearest

neighbor matching (Rubin, 1973). In this algorithm, each treated unit is matched

to k control units that are closest in terms of d, and the control units that are not

selected are discarded. Therefore the nearest neighbor matching estimates the ATT.

When k = 1, matching is the counterpart of paired design in randomized experiments.

The user can also choose if a control unit is allowed to be used multiple times as a

match (matching with replacement). In matching without replacement, the algorithm

usually proceeds in a greedy fashion and the output is sensitive to which treatment

units are matched first. It is also possible to avoid this approach and instead minimize

a global distance measure, which picks about the same controls but does a better job

of assigning matched controls to treated units (Gu and Rosenbaum, 1993).

The state-of-the-art matching algorithm is Genetic Matching developed by Dia-

mond and Sekhon (2013a). It is available in the R package Matching (Sekhon, 2011).
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Given a user-specified criterion of covariate imbalance, it uses a genetic search al-

gorithm to choose the weights W in the generalized Mahalanobis distance, so the

matched samples optimize the specified imbalance criterion.

One drawback of the nearest neighbor matching is that some control units are

discarded and not used in the analysis. Subclassfication and full matching instead

use all individuals and can estimate either the ATE or the ATT. Another motivation of

these approaches is the randomized block design, where each block typically contains

more than one treated unit. Subclassification forms groups of units who have similar

pretreatment covariates. Full matching is more sophisticated and creates a series

of matched sets, where each matched set contains at least one treated unit and at

least one control unit. See Hansen (2004) and Stuart (2010) for more detail of these

methods.

5.2 Propensity score matching

As mentioned earlier in Section 2.2, the treatment assignment mechanism plays a key

role in observational studies. If we are willing to assume the assignment mechanism

P(T |X) is ignorable (2.1) or unconfounded (2.2), the observational study resembles

a randomized experiment. How should we then proceed?

In a seminal work, Rosenbaum and Rubin (1983) highlight the role of “propensity

score” p(X) = P(T = 1|X) in observational studies with binary T . Their work is

motivated by the di�culty of extending raw matching methods (see section 5.1) to

high dimensional covariates. They call a function b(X) of the observed covariates

a balancing score if X ?? T | b(X). In other words, P(T |X) = P(T | b(X)), so

the multivariate matching problem is reduced to a univariate matching problem.

In this sense, a balancing score is the “su�cient statistic” of non-random treatment

assignment. Rosenbaum and Rubin (1983) prove that any function b(X) is a balancing

score if and only if it is finer than p(X) in the sense that b(X) = f(p(X)) for some

function f . In this sense, propensity score is the most basic tool to adjust for covariate

imbalance, and sometimes it is more advantageous to match or subclassify not only

for p(X) but for other functions of X as well.



CHAPTER 5. MATCHING AND WEIGHTING 29

In randomized experiments, the propensity score is usually specified before the ex-

periment (e.g. a randomized block design). In observational studies, p(X) is unknown

and needs to be estimated from the data. For this purpose, the most commonly used

method is the logistic regression solved by maximum likelihood. Here we make two re-

marks about propensity score estimation: First, propensity score modeling is a means

to an end (covariate balance), not an end in itself; Second, Chapter 6 shows that,

in order to achieve better covariate balance, certain tailored loss functions should be

used instead of the Bernoulli likelihood to estimate the propensity score.

After the propensity scores are estimated, we can in principle apply any matching

methods described in Section 5.1. Notice that propensity score is a scalar, so this is

a univariate matching problem. The most commonly used distance metrics are

d(X
i

, X
j

) =
��p̂(X

i

)� p̂(X
j

)
�� , and

d(X
i

, X
j

) =
��logit(p̂(X

i

))� logit(p̂(X
j

))
�� .

Once the distance metric is chosen, one can apply nearest neighbor matching (with

or without replacement), subclassification, or full matching described in Section 5.1.

Notice that the distance metric is defined by the estimated propensity scores

which are not necessarily close to the true ones. The most common reason for this is

model misspecification. In the standard practice, the matches/subclasses obtained by

propensity score matching must go through a diagnostic step to ensure all covariates

are well balanced. If not, one needs to explore other specifications until satisfactory

covariate balance is achieved. This cyclic procedure, certainly not very pleasant

for applied researchers, is sometimes called the “propensity score tautology” in the

literature (Ho et al., 2007).

5.3 Empirical calibration weighting

We will discuss weighting methods in the next two Sections. In some sense, the

matching methods described in Sections 5.1 and 5.2 are also weighting methods with

discrete weights. For example, in 1:1 nearest neighbor matching without replacement,



CHAPTER 5. MATCHING AND WEIGHTING 30

treated units always have weight 1 and control units have weight either 0 or 1. With

subclassification or full matching, the weights can be more complicated, but still they

are only finite many of possible weights. The weighting methods described in the

next two Sections do not have this constraint and thus is inherently di↵erent from

matching.

In general, weighting methods seek non-negative weights w such that the weighted

empirical distributions F
w

(0) =
P

T

i

=0 wi

· �
X

i

and F
w

(1) =
P

T

i

=1 wi

· �
X

i

(�
x

is the

point mass at x) are as close as possible. Typically, the distance between these

weighted distributions is measured by the standardized di↵erence (Rosenbaum and

Rubin, 1985, Austin and Stuart, 2015) with respect to some covariate function �(·),

dsd,�(·)(Fw

(0), F
w

(1)) =

��E
F

w

(1)[�(X)]� E
F

w

(0)[�(X)]
��

Var
F

w

(0)+F

w

(1)(�(X))
, (5.2)

or the univariate Kolmogorov-Smirnov statistics,

dKS,j = max
x

|F
w,j

(1, x)� F
w,j

(0, x)|, j = 1, . . . , p, (5.3)

where F
w,j

(t, x) (t = 0 or 1) is the marginal cumulative distribution function of F
w

(t)

for the j-th variable evaluated at x.

However, these distance metrics are too complicated and in general non-convex in

w, thus it is di�cult to minimize them over w directly. To remedy this, we need to

find convex alternatives. The genetic matching of Diamond and Sekhon (2013b) is an

example of this idea applied to matching. The user usually specifies some combination

of the distance metrics in (5.2) and (5.3), but genetic matching instead search over

the weighted Mahalanobis distance metrics (5.1), which are much easier to handle.

Now we turn to empirical calibration weighting, which seek weights w such that

the standardized di↵erence (5.2) is zero or small for some pre-specified functions �
k

,

k = 1, . . . ,m. Zero standardized di↵erence implies exact sample balance, i.e. the

weights w solve

X

T

i

=1

w
i

�
k

(X
i

) =
X

T

i

=0

w
i

�
k

(X
i

), k = 1, . . . ,m. (5.4)
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We should also avoid the trivial solution to (5.4) by asking

X

T

i

=1

w
i

=
X

T

i

=0

w
i

= 1. (5.5)

When k is not too large, there are usually infinite number of solutions to (5.4) and

(5.5). To pick one of them, we can ask w as close to uniform as possible. The practical

reason for this is that the weighted di↵erence estimator

⌧̂ =
X

T

i

=1

w
i

Y
i

�
X

T

i

=0

w
i

Y
i

has variance
P

n

i=1 w
2
i

Var(Y
i

|X, T ) conditional on X and T . If we assume homoskedas-

tic noise Var(Y
i

|X) = �2, then we should pick w to minimize its squared norm
P

n

i=1 w
2
i

.

In general, the empirical calibration method minimizes
P

n

i=1 D(w
i

, v
i

) subject to

exact balance (5.4) and the normalization (5.5), where D(w, v) is a function of w that

achieves its minimum at v and {v
i

}n
i=1 is a set of uniform weights. In Deville and

Särndal (1992), calibration estimator is originally used in survey sampling with non-

random samples. The entire population is unobserved, but we know some population

moments (expectation, variance, etc.) of the covariates. To estimate the population

average of the response, Deville and Särndal (1992) construct weighted survey samples

that are calibrated to the known population moments. This the same as estimating

ATT in observational studies if we view the treated units as the population whose

Y (0)’s are missing.

Although calibration estimation is commonly used in survey sampling (Kim and

Park, 2010), it is not considered in observational studies until recently. Hainmueller

(2011) considers estimating ATT with D being the negative Shannon entropy. Zu-

bizarreta (2015) uses the squared norm of w as the objective but allows inexact

balance. Chan et al. (2015) prove that the empirical calibration estimators for ATT

and ATE can achieve the semiparametric e�ciency bound.
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5.4 Propensity score weighting

In this Section we describe propensity score weighting, the continuous counterpart of

propensity score matching in Section 5.2. One can draw a similar comparison between

empirical calibration weighting in Section 5.3 and raw matching Section 5.1. This is

summarized in Table 5.1 below.

Discrete weights Continuous weights
By raw covariates Raw matching Empirical calibration weighting
By propensity scores Propensity score matching Inverse probability weighting

Table 5.1: Matching and weighting methods

Propensity score weighting is commonly called inverse probability weighting (IPW)

in the observational study literature, because that is the form of weighting to estimate

the ATE. It is first developed by Horvitz and Thompson (1952) to estimate the mean

of a population from a stratified random sample (a survey sampling problem), so it is

also called Horvitz-Thompson estimator. IPW is applied to account for di↵erent pro-

portions of observations within strata in the target population. If p
i

is the inclusion

probability of the sample Y
i

, the Horvitz-Thompson estimator is given by

µ̂ =
1

n

nX

i=1

p�1
i

Y
i

.

In observational studies, the ATE, E[Y (1) � Y (0)], can be viewed as estimating

two population means. Therefore, the IPW estimator is given by the di↵erence of

two Horvitz-Thompson estimators

⌧̂ATE =
1

n

X

T

i

=1

Y
i

p̂(X
i

)
� 1

n

X

T

i

=0

Y
i

1� p̂(X
i

)
, (5.6)

where p̂(·) is the estimated propensity score. This method can also be extended to

other estimands. For the ATT, the IPW estimator is given by

⌧̂ATT =
1

n

X

T

i

=1

Y
i

� 1

n

X

T

i

=0

p̂(X
i

)

1� p̂(X
i

)
Y
i

. (5.7)



CHAPTER 5. MATCHING AND WEIGHTING 33

Chapter 6 considers IPW estimators for more general estimands.

Compared to matching methods, IPW is a “cleaner” and more e�cient approach,

because the discrete matches are replaced by continuous weights. In a key paper,

Hirano et al. (2003) showed that IPW paired with sieve propensity score model can

achieve the semiparametric e�ciency bound, which gives the theoretical reason to

prefer weighting over matching (see Section 6.5.1 for more detail). However, this also

comes with a price. The inverse probability weights are more volatile and sensitive

to model misspecification. If some estimated propensity score p̂(X
i

) is close to 0 (for

a treated unit) or 1 (for a control unit), its inverse weight can become very large and

unstable, so the IPW estimator may perform poorly in finite sample. One way to

mitigate this is to normalize the weights within each treatment group. For example,

the normalized IPW estimator of ATE is

⌧̂ ⇤ATE =

0

@
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T

i
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1
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i
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(5.8)

Still, this does not completely solve the instability issue that the estimator could be

largely decided by just a few observations.

The instability issue was o�cially brought up by Kang and Schafer (2007), but it

was perhaps well known by practitioners before that. Kang and Schafer (2007) con-

structed an artificial example in which inverse probability weights are very unstable

and the IPW estimator performs poorly. Moreover, they showed that if we further

augment IPW by an outcome regression (see Chapter 7), the estimator could perform

even worse though it has the theoretical “double robustness” property.

Of course, when inverse probability weights are unstable, they usually do not

balance the covariates very well. This example motivated many empirical calibra-

tion weighting methods (e.g. Tan, 2010, Hainmueller, 2011, Zubizarreta, 2015, Chan

et al., 2015) and also the approach described in the next Chapter that estimates the

propensity score by minimizing loss functions tailored for the objective of covariate

balance.



Chapter 6

Tailoring the Propensity Score

Model

This Chapter is based on Zhao (2016).

6.1 Motivation

In the last Chapter, we introduced several methods to estimate causal e↵ects from

observational studies. As summarized in Table 5.1, some of these methods try to

directly balance the raw covariates, while others resort to the propensity score. In

general, propensity score is a more principled approach and easier to implement,

because all the confounding information is summarized in a single number. However,

this approach is not robust to model specification. Consider the following three main

steps that most of the propensity-score based methods share:

Step 1 Estimate a propensity score model, most commonly by maximizing some

scoring rule such as the Bernoulli likelihood. A scoring rule is a negative loss

function and the two terms will be used interchangeably in this Chapter. The

generalized linear model (McCullagh and Nelder, 1989) has been a workhorse in

practice, but more sophisticated alternatives such as nonparametric regression

(e.g. Hirano et al., 2003) and machine learning methods (e.g. McCa↵rey et al.,

34
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2004, Lee et al., 2010, Wager and Athey, 2015) have also been suggested in the

literature.

Step 2 Adjust for covariate imbalance by using the estimated propensity scores from

Step 1. Numerous methods have been proposed, including: matching (e.g.

Rosenbaum and Rubin, 1985, Abadie and Imbens, 2006), subclassification (e.g.

Rosenbaum and Rubin, 1984), and inverse probability weighting (e.g. Robins

et al., 1994, Hirano and Imbens, 2001). The reader is referred to Lunceford and

Davidian (2004), Imbens (2004), Caliendo and Kopeinig (2008), Stuart (2010)

for some comprehensive reviews.

Step 3 Choose a weighted average treatment e↵ect as the estimand and estimate

it by using the matches/strata/weights generated in Step 2. Report the point

estimate, a confidence interval, evidence of su�cient covariate balance in Step

2 and sensitivity results if necessary.

A leading concern of the propensity-score based methods is that the eventual

estimator in Step 3 can be highly sensitive to the outcome of Step 1—the estimated

propensity score model (see e.g. Smith and Todd, 2005, Kang and Schafer, 2007).

In fact, all the adjustment methods in Step 2 assume that the estimated propensity

scores are very close to the truth. This generally requires a correctly specified model

or an e↵ective nonparametric regression. In practice, correct model specification is

often unrealistic, and nonparametric regression, due to the curse of dimensionality, is

a sensible choice only if the sample size is large and the covariates are few. To alleviate

the concern of model misspecification, a commonly adopted strategy is to gradually

increase the model complexity by forward stepwise regression (Imbens and Rubin,

2015, Section 13.3–13.4). The first two steps described above are usually repeated for

several times until satisfactory covariate balance is achieved.

In the standard practice, maximum likelihood is used to fit the propensity score

model in Step 1. However, maximum likelihood is suboptimal at balancing covariates.

Figure 6.1 implements the aforementioned forward stepwise strategy with logistic re-

gression and inverse probability weighting (IPW). More detail about this simulation
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example due to Kang and Schafer (2007) can be found in Section 6.7.1. In this Fig-

ure, covariate imbalance is measured by the standardized di↵erence of each predictor

between the two treatment groups (precise definition in Section 10.2). A widely used

criterion is that a standardized di↵erence above 10% is unacceptable (Normand et al.,

2001, Austin and Stuart, 2015), which is the dashed line in Figure 6.1. The left panel

of Figure 6.1 uses the Bernoulli likelihood to fit and select logistic regression models.

The standardized di↵erence paths are not monotonically decreasing and never achieve

satisfactory level (10%) for more than half of the predictors. This certainly creates

inconvenience for applied researchers, and more importantly, limits our understand-

ing of the fundamental bias-variance trade-o↵ in selecting a propensity score model.

In contrast, the right panel of Figure 6.1 uses the covariate balancing scoring rule

(CBSR) proposed in this Chapter and all 8 predictors are well balanced after 4 steps.

As another highlighting feature, all active predictors (i.e. variables in the selected

model) are exactly balanced using inverse probability weights derived by CBSR.

Why doesn’t maximum likelihood always generate covariate balancing weights?

Let’s review the three-step procedure above, in which the user has the freedom to

choose: in Step 1, a form of propensity score model (e.g. certain link function in

the GLM) and a scoring rule to fit the model; in Step 2, a propensity-score based

adjustment method; in Step 3, a weighted average treatment e↵ect as the estimand.

It is understandably tempting to fit a single propensity score model and use it to infer

multiple estimands. Along this road, maximum likelihood most e�ciently estimates

the propensity scores. However, the propensity score model is a means to an end,

not an end in itself. The most accurate (or even the true) propensity scores do not

necessarily produce the best sample balance.

The central message of this Chapter is that we should tailor the scoring rule ac-

cording to the estimand, since ultimately we are interested in the estimate in Step 3.

CBSR views the three-step procedure as a whole and provides a systematic approach

to obtain balancing weights. The CBSR-maximizing propensity scores in Step 1 are

best paired with inverse probability weighting (IPW) in Step 2 for its algebraically

tractability. As a side note, IPW is also quickly gaining popularity in the literature
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Figure 6.1: The covariate balancing scoring rule (CBSR) proposed in this Chapter is
much better than Bernoulli likelihood at reducing covariate imbalance. Propensity
score is modeled by logistic regression and fitted by CBSR or Bernoulli likelihood.
Standardized di↵erence is computed using inverse probability weighting (IPW) and
pooled variance for the two treatment groups as in Rosenbaum and Rubin (1985),
see equation (6.25) in Section 6.4.5. A standardized di↵erence above 10% is viewed
unacceptable by many practitioners. More detail of the forward stepwise regression
and this simulation example can be found in Sections 6.4.1 and 6.7.1.

(Austin and Stuart, 2015) and is more more e�cient than matching and subclassi-

fication. After obtaining the specific form of IPW from the estimand, the covariate

balancing score rule can be uniquely determined from the link function of the GLM

in Step 1.

6.2 Background on statistical decision theory

Propensity score estimation is a decision problem, though an unusual one. In a typical

decision problem of making probabilistic forecast, the decision maker needs to pick
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an element as the prediction from P , a convex class of probability measures on some

general sample space ⌦. For example, a weather forecaster needs to report the chance

of rain tomorrow, so the sample space is ⌦ = {rain, no rain} and the prediction is a

Bernoulli distribution. Propensity score is also a (conditional) probability measure,

but the goal is to achieve satisfactory covariate balance rather than best predictive

power. This marks a clear di↵erence to the prediction problem. Nevertheless, statis-

tical decision theory provides a general framework and e↵ective tools to fit a covariate

balancing propensity score model.

6.2.1 Proper scoring rules

Let’s first review some useful concepts. At the core of statistical decision theory is the

scoring rule, which can be any extended real-valued function S : P ⇥ ⌦ ! [�1,1]

such that S(P, ·) is P-integrable for all P 2 P (Gneiting and Raftery, 2007). If the

decision is P and ! materializes, the decision maker’s reward or utility is S(P,!).

An equivalent but more pessimistic terminology is loss function, which is just the

negative scoring rule. These two terms will be used interchangeably in this Chapter.

If the outcome is probabilistic in nature and the actual probability distribution is

Q, the expected score of forecasting P is

S(P,Q) =

Z
S(P,!)Q(d!).

To encourage honest decisions, we generally require the scoring rule S to be proper

with respect to P that is defined by

S(Q,Q) � S(P,Q), 8P,Q 2 P . (6.1)

The rule is called strictly proper with respect to P if (6.1) holds with equality if and

only if P = Q. In estimation problems, strictly proper scoring rules provide appealing

loss functions that can be tailored according to the scientific problem.

In observational studies, the sample space is commonly dichotomous ⌦ = {0, 1}
(two treatment groups: 0 for control and 1 for treated), though there is no essential
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di�culty to extend the approach in this Chapter to |⌦| > 2 (multiple treatments)

or ⌦ ⇢ R (continuous treatment). In the binary case, Savage (1971) showed that if

S(·, 0) and S(·, 1) are real-valued except for possibly S(0, 1) = 1 or S(1, 0) = �1,

every proper scoring rule S can be characterized by

S(p, 1) = G(p) + (1� p)G0(p) =
Z

(1� p)G00(p)dp,

S(p, 0) = G(p)� pG0(p) = �
Z

pG00(p)dp,

where G : [0, 1] ! R is a convex function and G0(p) is a subgradient of G at the

point p 2 [0, 1]. When G is second-order di↵erentiable, an equivalent but useful

representation is
@

@p
S(p, t) = (t� p)G00(p), t = 0, 1. (6.2)

Since the function G defines an equivalent class of scoring rule, we shall also call G a

scoring rule.

A useful class of proper scoring rules is the following Beta family

G00
↵,�

(p) = p↵�1(1� p)��1, �1 < ↵, � <1. (6.3)

Notice that unlike the Beta family of distributions, the parameters here can be neg-

ative. These scoring rules were first introduced by Buja et al. (2005) to approximate

the weighted misclassification loss by taking the limit ↵, � ! 1 and ↵/� ! c. For

example, if c = 1, the score G
↵,�

converges to the zero-one misclassification loss.

Many important scoring rules belong to this family. For example, the Bernoulli

log-likelihood function or the logarithmic score S(p, t) = t log p + (1 � t) log(1 � p)

corresponds to ↵ = � = 0, and the Brier score (or equivalently the squared error

loss when flipping the sign) S(p, t) = �(t � p)2 corresponds to ↵ = � = 1. For

our purpose of estimating propensity score, it will be shown later that the subfamily

�1  ↵, �  0 is especially useful.
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6.2.2 Propensity score estimation by maximizing score

Given i.i.d. observations (X
i

, T
i

) 2 Rd ⇥ {0, 1}, i = 1, 2, . . . , n where T
i

is the binary

treatment assignment and X
i

is a vector of d pre-treatment covariates, the goal is to

fit a model for the propensity score p(X) = P(T |X). Suppose we are willing to use a

parametric model that belongs to the family P = {p
✓

(X) : ✓ 2 ⇥}. Given a strictly

proper scoring rule S, the goodness-of-fit of ✓ can be measured by the average score

S
n

(✓) =
1

n

nX

i=1

S(p
✓

(X
i

), T
i

),

The optimum score estimator is obtained by the unique maximizer of the average

score:

✓̂
n

= argmax
✓

S
n

(✓) (6.4)

Notice that the a�ne transformation S(p, t) 7! aS(p, t) + b(t) for any a > 0 and

�1 < b(t) < 1 results in the same estimator ✓̂
n

, so we shall not di↵erentiate

between these equivalent scoring rules and use a single function S(p, t) to represent

all equivalent ones.

In view of the population identity

E
⇥S

n

(✓)
⇤
= E

X,T

[S(p
✓

(X), T )] = E
X

[E
T |X [S(p✓(X), T )]],

the optimum score estimator is Fisher-consistent. Fisher-consistency means that

the true value of the parameter ✓ would be obtained if the true propensity score

is p(x) = p
✓

(x) and the estimator were calculated using the entire population rather

than a sample. In many cases, including the problem considered in this Chapter, this

property also leads to asymptotic consistency: ✓̂
n

p! ✓ as n!1.

This Chapter focuses on using the generalized linear models (McCullagh and

Nelder, 1989)

p
✓

(X) = l�1(f
✓

(X)) = l�1(✓T�(X)) (6.5)

to model the propensity score. Here l is the link function, f
✓

(X) is the canonical

parameter which is modeled by a linear combination of the m-dimensional predictors
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�(X) = ('1(X), . . . ,'
m

(X))T . The covariate balancing scoring rule derived in this

Chapter depends on the link function l. The most common choice is the logistic link:

l(p) = log
p

1� p
, l�1(f) =

ef

1 + ef
. (6.6)

This will be the choice for all the numerical examples in this Chapter.

When S is di↵erentiable and assuming exchangeability of taking expectation and

derivative, the maximizer of E[S
n

(✓)], which is indeed ✓ if p(x) = p
✓

(x) by Fisher-

consistency, is characterized by the following estimating equations

r
✓

E[S
n

(✓)] = E[r
✓

S
n

(✓)] = E
X,T

[r
✓

S(l�1(✓T�(X)), T )] = 0. (6.7)

Using the representation (6.2) and the inverse function theorem, we have

r
✓

S(l�1(✓T�(X)), T ) = (T � p
✓

(X))G00(p
✓

(X))
1

l0(p
✓

(X))
· �(X).

Therefore the condition (6.7) can be written as

E
X,T

⇢
G00(p

✓

(X))

l0(p
✓

(X))

⇥
T (1� p

✓

(X))� (1� T )p
✓

(X)
⇤ · �(X)

�
= 0. (6.8)

The optimum score estimator, ✓̂
n

, can be determined from (6.8) by taking the expec-

tation over the empirical distribution of (X, T ), provided that S is strictly proper so

the solution to (6.8) is unique.

6.3 Covariate balancing scoring rules

The covariate balancing scoring rules (CBSR) are motivated by the estimating equa-

tions (6.8), which can be interpreted as weighted di↵erences of �(X) between the

treatment (T = 1) and the control (T = 0). The weights are given by, for t = 0, 1,

w(x, t) =
G00(p(x))
l0(p(x))

[t(1� p(x)) + (1� t)p(x)]. (6.9)
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Equation (6.8) can now be rewritten as stochastic balance of the predictors

E[(T � (1� T ))w(X, T ) · �(X)] = 0, (6.10)

The question is: Are these weights meaningful? In other words, do they correspond

to some form of inverse probability weighting (IPW)?

6.3.1 Covariate balancing scoring rules

The answer to this question is, of course, positive. In short, every convex function G

defines a weighted average treatment e↵ect via (6.9). To see this we need to intro-

duce some notation. Following the Neyman-Rubin causal model, let Y (t), t = 0, 1

be the potential outcomes and Y = TY (1) + (1 � T )Y (0) be the observed outcome.

Throughout this Chapter we assume the strong ignorability (2.2) of treatment assign-

ment (Rosenbaum and Rubin, 1983), so there is no hidden bias:

Assumption 6.1. T ?? (Y (0), Y (1))|X.

First, we define a population parameter by replacing �(X) in (6.10) with the

outcome Y

⌧
w

= E
X,T,Y

{(T � (1� T ))w(X, T )Y },

Under Assumption 6.1, ⌧
w

is indeed an (unnormalized) weighted average treatment

e↵ect

⌧
w

= E
X,Y

⇥
w(X)(Y (1)� Y (0))

⇤
, (6.11)

where

w(X) = p(X)w(X, 1) = (1� p(X))w(X, 0) =
G00(p(X)) p(X) (1� p(X))

l0(p(X))
.

In practice, it is usually more meaningful to consider the normalized version of ⌧
w

:

⌧ ⇤
w

= ⌧
w

,
E
X,T,Y


G00(p(X)) p(X) (1� p(X))

l0(p(X))

�
. (6.12)
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↵ � estimand S(p, 1) S(p, 0)

-1 -1 ⌧ = ⌧ ⇤ = E[Y (1)� Y (0)] log p

1�p

� 1
p

log 1�p

p

� 1
1�p

-1 0 ⌧ ⇤ = E[Y (1)� Y (0)|T = 0] �1
p

log 1�p

p

0 -1 ⌧ ⇤ = E[Y (1)� Y (0)|T = 1] log p

1�p

� 1
1�p

0 0 ⌧ = E[p(X)(1� p(X)) · (Y (1)� Y (0))] log p log(1� p)

Table 6.1: Estimands and scoring rules in the Beta family.

The question now becomes: is ⌧ ⇤
w

an interesting estimand in observational studies?

The answer to this question is, again, positive. Consider the following Beta family of

weighted average treatment e↵ects

⌧
↵,�

= E[p(X)↵+1(1� p(X))�+1(Y (1)� Y (0))], � 1  ↵, �  0. (6.13)

Several important estimands belong to this family, including the average treatment

e↵ect (ATE), the average treatment e↵ect on the untreated (ATUT), the average

treatment e↵ect on the treated (ATT), and the optimally weighted average treatment

e↵ect under homoscedasticity (Crump et al., 2006). See the third column of Table 6.1

for the definitions of these estimands.

The next Proposition shows an exact correspondence between the Beta family of

estimands (6.13) and the Beta family of scoring rules (6.3).

Proposition 6.1. Under Assumption 6.1, if G = G
↵,�

and l is the logistic link

function, then ⌧
w

= ⌧
↵,�

.

Proof. Use equations (6.3), (6.6), (6.9), (6.11) and (6.13).

Therefore, some of the most important estimands in observational studies can be

defined by (6.12). Proposition 6.1 also suggests a general strategy to estimate average

causal e↵ect:

1. Pick a weighted average treatment e↵ect ⌧ = ⌧
↵,�

from the Beta family (6.13)

as the estimand.
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2. Compute its corresponding scoring rule using (6.9) or find it from Table 6.1

below.

3. Using the scoring rule, fit a logistic regression p̂(X) = l�1(✓̂T�(X)) for the

propensity score.

4. Estimate ⌧ and its normalized version ⌧ ⇤ defined in (6.12) by

⌧̂ =
X

i

:
T

i

=1

ŵ
i

Y
i

�
X

i

:
T

i

=0

ŵ
i

Y
i

and ⌧̂ ⇤ =
X

i

:
T

i

=1

ŵ⇤
i

Y
i

�
X

i

:
T

i

=0

ŵ⇤
i

Y
i

, (6.14)

where

ŵ
i

= p
✓̂

(X
i

)↵(1� p
✓̂

(X
i

))�[T
i

(1� p
✓̂

(X
i

)) + (1� T
i

)p
✓̂

(X
i

)] (6.15)

and the normalized weights are ŵ⇤
i

= ŵ
i

/
P

j

:
T

j

=T

i

ŵ
j

, i = 1, . . . , n.

A main advantage of this approach is that the weights automatically balance the

predictors �(X) in the logistic regression, as indicated by the next theorem.

Theorem 6.1. Given a scoring rule S
↵,�

in the Beta family and a logistic regression

model p
✓

(X) = l�1(✓T�(X)), suppose ✓̂ is obtained by maximizing the average score

as in (6.4). Then the weights ŵ
i

, i = 1, . . . , n, exactly balance the sample predictors

X

i

:
T

i

=1

ŵ
i

�(X
i

) =
X

i

:
T

i

=0

ŵ
i

�(X
i

). (6.16)

Furthermore, if the predictors include an intercept term (i.e. 1 is in the linear span

of �(X)), then ŵ⇤ also satisfies (6.16).

Proof. This theorem is a simple corollary of the estimating equations (6.10).

Because of Theorem 6.1, G
↵,�

or the resulting S
↵,�

will be called the covariate

balancing scoring rule (CBSR) with respect to the estimand ⌧
↵,�

and the logistic link

function.
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6.3.2 A closer look at the Beta family

One may wonder why the estimands in (6.13) are restricted to the subfamily �1 
↵, �  1. There are at least two reasons. First, as mentioned earlier, this sub-

family already contains most of the important estimands that are meaningful to

observational studies (see Table 6.1). Second, as shown in Proposition 6.2 below, this

is the only region such that the maximum score problem (6.4) is convex when p
✓

(X)

is modeled by logistic regression. Therefore the optimization problem (6.4) has no

local maximum and can be solved e�ciently (e.g. by Newton’s method).

Proposition 6.2. For the Beta family of scoring rules defined in equations (6.2)

and (6.3) and the logistic link function l�1(f) = ef/(1 + ef ), the score functions

S(l�1(f), 0) and S(l�1(f), 1) are both concave functions of f 2 R if and only if �1 
↵, �  1. Moreover, if (↵, �) 6= (�1, 0), S(l�1(f), 0) is strongly concave; if (↵, �) 6=
(0,�1), S(l�1(f), 1) is strongly concave.

Proof. See Section 6.8.1.

Figure 6.2 plots the scoring rules S
↵,�

for some combinations of ↵ and �. The

top panels show the score function S(p, 0) and S(p, 1) for 0 < p < 1, which are

normalized so that S(1/4, 1) = S(3/4, 0) = �1 and S(1/4, 0) = S(3/4, 1) = 1. By

a change of variable, one can show S
↵,�

(p, 1) = S
�,↵

(1 � p, 0). This is the reason

that the two subplots in Figure 6.2a are essentially reflections of each other. The

bottom panels show the induced scoring rule S(p, q) defined by section 6.2.1 or more

specifically S(p, q) = qS(p, 1)+ (1� q)S(p, 0) at two di↵erent values of q = 0.05, 0.15.

For aesthetic purposes, the scoring rules in Figure 6.2b are normalized such that

�S(p, q) = 1 and �S(p, 1� q) = 2.

Figure 6.2 shows that the scoring rules S
↵,�

, when �1  ↵, �  0, are highly

sensitive to small di↵erences of small probabilities. For example, in Figure 6.2a the

loss function �S
↵,�

(p, 1) is unbounded above when ↵, � 2 {�1, 0}, hence a small

change of p near 0 may have a big impact on the score. In Figure 6.2b, the averaged

scoring rules S
↵,�

(p, q), when (↵, �) = (�1,�1) or (�1, 0), are also unbounded near

p = 0. Due to this reason, Selten (1998, Section 2.6) argued that these scoring rules

are inappropriate for probability forecast problems.
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(b) Loss functions �S
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(p, q) for q = 0.05 and 0.15.

Figure 6.2: Graphical illustration of the Beta-family of scoring rules defined in (6.3).
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On the contrary, the unboundedness is actually a desirable feature for propensity

score estimation, as the goal is to avoid extreme probabilities. Consider the standard

inverse probability weights (IPW)

ŵ
i

=

8
><

>:

p̂�1
i

if T
i

= 1,

(1� p̂
i

)�1 if T
i

= 0,
(6.17)

where p̂
i

= p
✓̂

(X
i

) is the estimated propensity score for the i-th data point. This

corresponds to ↵ = � = �1 in the Beta family and estimates ATE. Several previous

articles (e.g. Robins and Wang, 2000, Kang and Schafer, 2007, Robins et al., 2007)

have pointed out the hazards of using large inverse probability weights. For example,

if the true propensity score is p(X
i

) = q = 0.05 and it happens that T
i

= 1, we would

want p̂
i

not too close to 0 so ŵ
i

is not too large. Conversely, we also want p̂
i

not

too close to 1, so in the more likely event that T
i

= 0 the weight ŵ
i

is not too large

either. In an ad hoc attempt to mitigate this issue, Lee et al. (2011) studied weight

truncation (e.g. truncate the largest 10% weights). They found that the truncation

can reduce the standard error of the estimator ⌧̂ but also increases the bias.

The covariate balancing scoring rules provide a more systematic approach to avoid

large weights. For example, the scoring rule S�1,�1 precisely penalizes large inverse

probability weights as �S�1,�1(p, q) is unbounded above when p is near 0 or 1 (see the

left plot in Figure 6.2b). Similarly, when estimating the ATUT ⌧�1,0, the weighting

scheme would put ŵ
i

/ (1� p̂
i

)/p̂
i

if T
i

= 1 and ŵ
i

/ 1 if T
i

= 0. Therefore we would

like p̂
i

to be not close to 0, but it is acceptable if p̂
i

is close to 1. As shown in in

Figure 6.2b, the curve �S�1,0(p, q) = q/p+(1� q) log(p/(1�p)) precisely encourages

this behavior, as it is unbounded above when p is near 0 and grows slowly when p is

near 1.

6.4 Adaptive strategies

So far we have only considered a fixed GLM to model the propensity score. This

Section discusses some adaptive extensions motivated by popular machine learning
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algorithms. In order to achieve the best predictive performance, most machine learn-

ing methods prespecify a loss function to train the model. For the purpose of obtaining

covariate balancing weights, we only need to replace the loss function by the covariate

balancing scoring rule (CBSR) introduced in this Chapter. This is indeed a major

advantage of using scoring rules instead of estimating equations.

6.4.1 Forward Stepwise

Let’s start with the forward stepwise regression which is already widely used in obser-

vational studies (Imbens and Rubin, 2015). The notation �(x) = (�1(x), . . . ,�m

(x)) is

used to indicate all the potential linear predictors. This entire Section allows m > n,

but it is not necessary to include all the predictors in the model.

Algorithm 6.1 Forward stepwise regression for propensity score

Input data: (T
i

, X
i

), i = 1, . . . , n.
Input arguments: predictors {�1(x), . . . ,�m

(x)}, link function l(·), proper scor-
ing rule S(p, t).
Notation: FA = span({�

k

(x)|k 2 A}).
Algorithm:
Initialize active set A = ;.
for j = 1, . . . ,m do

Compute S
jk

= max
f2FA[{k}

P
n

i=1 S(l
�1(f(X

i

)), T
i

) for k 2 Ac.
Update A

k

= A
k

[ {argmax
k

S
jk

}.
end for

Output:
A⇤ from A

k

, k = 1, . . . ,m that optimizes some criterion (e.g. AIC, BIC, least
covariate imbalance).
f ⇤ = argmax

f2FA⇤

P
n

i=1 S(l
�1(f(X

i

)), T
i

).

In Algorithm 6.1, the predictors are added one by one in a forward stepwise

regression. After choosing a scoring rule, the algorithm in each step fits a GLM using

all the selected predictors and each unselected predictor. The unselected predictor

that increases the score S
n

the most is added to the active set. This procedure is

repeated until no new predictor can be added or the current score S
n

is already 1.

Figure 6.1 demonstrates this adaptive algorithm with a simulation example described
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in Section 6.7.1. There is no need to reiterate that CBSR is much better at reducing

covariate imbalance than Bernoulli likelihood.

6.4.2 Regularized Regression

Another widely-used adaptive method is the following regularized solution of the

GLM (6.5):

✓̂
�

= argmax
✓

1

n

nX

i=1

S(p
✓

(X
i

), T
i

)� �J(✓), (6.18)

where J(·) is a regularization term that penalizes large ✓ (complicated model) and �

controls the degree of regularization. This estimator reduces to the optimum score

estimator (6.4) when � = 0. For simplicity, this Chapter only considers penalty of

the form

J(✓) =
1

a

mX

k=1

|✓
k

|a for some a � 1. (6.19)

Some typical choices are the l1 norm J(✓) = k✓k1 (lasso) and the squared l2 norm

J(✓) = k✓k22 (ridge regression).

An important advantage of the regularized regression (6.18) is that it allows high

dimensional predictors �(X). This is useful to propensity score estimation for at least

three reasons:

1. The pre-treatment covariates X can be high dimensional, especially if we wish

to follow Rubin (2009)’s advice that “we should strive to be as conditional as

is practically possible”.

2. Even if X is relatively low dimensional, we may still want to use a high dimen-

sional �(X) to essentially build a nonparametric propensity score model.

3. The Beta family of scoring rules (6.3) with �1  ↵, �  0 are unbounded

above, so sup
✓

S
n

(✓) can easily be infinity if � is high dimensional, making the

optimum score problem (6.4) infeasible. The Bernoulli likelihood (↵ = � = 0)

also su↵ers from this. In this case, it is necessary to add some regularization as

in (6.18) to obtain any propensity score model.
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6.4.3 Kernel method

The predictors �(X) can even be infinite dimensional via a popular nonparametric

regression method in machine learning (Wahba, 1990, Hofmann et al., 2008, Hastie

et al., 2009). This method models the propensity score p(x) by l�1(f(x)) with f in

a reproducing kernel Hilbert space (RKHS) H
K

, where the kernel function K : X ⇥
X ! R describes the similarity between two observations of pre-treatment covariates.

Suppose that K has an eigen-expansion

K(x, x0) =
1X

k=1

c
k

�
k

(x)�
k

(x0)

with c
k

� 0,
P1

k=1 c
2
k

< 1. Elements of H
K

have an expansion in terms of these

eigen-functions,

f(x) =
1X

k=1

✓
k

�
k

(x).

The standard generalized linear model (6.5) corresponds to a finite-dimensional linear

reproducing kernel K(x, x0) =
P

m

k=1 �k

(x)�
k

(x0), but the eigen-functions (i.e. predic-

tors) {�
k

}1
k=1 can easily be infinite-dimensional. Since the RKHS is usually a very

rich function space, it is common to the regularize the score as in (6.18) with penalty

J(✓) = kfk2H
K

=
P1

k=1 ✓
2
k

/c
k

.

Although RKHS incorporates potentially infinite-dimensional predictors, the nu-

merical problem (6.18) is computationally feasible via the so-called “kernel trick”.

The representer theorem (c.f. Wahba, 1990) states that the solution to (6.18) is in-

deed finite-dimensional and has the form f̂(x) =
P

n

i=1 �̂iK(x,X
i

). Consequently, the

optimization problem (6.18) can be solved with the n-dimension parameter vector �.

Kernels are not newcomers to the toolbox for observational studies. Most of

the previous literature (e.g. Heckman et al., 1997, 1998) uses kernel as a smoothing

technique for propensity score estimation (i.e. a generalization of the nearest neighbor

matching) rather than generating a RKHS, but the kernel functionK is the same. The

tuning parameters in RKHS are the kernel bandwidths and the amount of smoothness

penalty. Sensitivity analysis may be carried out with little extra e↵ort by varying over
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di↵erent kernel forms and bandwidths.

The RKHS approach has another practical benefit: the modeling process is free

from guessing model specifications. The user only needs to choose a kernel that mea-

sures the closeness of two units based on pre-treatment covariates X. It is arguably

much easier for a field expert to answer questions like “is patient A or patient B more

similar to patient C based on their age and education?” than to speculate and make

sense of a model like “the logit of the propensity score is linear in age and years of

education”.

6.4.4 Gradient boosting

The gradient boosting machine of Friedman (2001) and Mason et al. (1999) is one of

the best performing supervised learning method (Caruana and Niculescu-Mizil, 2006).

Gradient boosting works particularly well when the model is intrinsically nonlinear,

an appealing feature for researchers concerned with model misspecification.

The idea behind gradient boosting is quite simple. We first start with the population-

level estimation. Let P denote the joint distribution of (X, T ) and F be a normed

model space of the canonical parameter f(x) = l(p(x)). If f̂(x) is the current guess,

the next guess is given by the steepest (gradient) ascent

f̂new(x) = f̂(x) + ⌘̂ĝ(x) (6.20)

where

ĝ = argmax
kgk=1

@

@g
S
↵,�

(f̂,P) = lim
✏!0

d

d✏
S
↵,�

(f̂ + ✏g,P) = argmax
kgk=1

EP [(2T � 1)ŵ(X, T )g(X)], and

(6.21)

⌘̂ = argmax
⌘�0

S
↵,�

(f̂ + ⌘ĝ,P). (6.22)

Here ŵ(X, T ) is computed from f̂ via (6.15). Intuitively, at each step we find the

current most unbalanced covariate function ĝ and move as far as we can towards that
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direction.

With finite sample, suppose we observe i.i.d. data (X
i

, T
i

), i = 1, . . . , n. T
i

2
{�1, 1}. Let P

n

be its empirical distribution. Now we wish to maximize S
↵,�

(P
n

, f).

However, this is not an easy task as it looks, because

EP
n

[(2T � 1)ŵ(X, T )g(X)] =
nX

i=1

(2T
i

� 1)w
↵,�

(T
i

, f̂(X
i

))g(X
i

)

only depends on the value of g at no more than n points. The definition (6.21) does

not quite make sense because the sample imbalance can be infinity. For example, if

all the X
i

, i = 1, . . . , n are distinct, we can take

g(x) =

8
><

>:

c(2T
i

� 1) x = X
i

for some i,

0 x 6= X
i

, 8 i,
(6.23)

and let c!1. The norm of g is always equal to 0, but its sample imbalance can be

arbitrarily large.

Of course we wouldn’t model the propensity score by some function like (6.23). To

solve this issue, we need to constrain the model space F so that the functions f and g

are “nice”. The most common model space for gradient boosting is the decision tree.

To be more precise, the approximate functional gradient ĝ is obtained by maximizing

(6.21) in the space of decision trees, and the eventual estimator f̂ is the sum of many

trees.

Notice that the finite sample solution to (6.21) admits a simple solution. Let

F
k-tree be the space of all trees with depth at most k. Then

ĝ = argmax
kgk=1, g2F

k-tree

nX

i=1

(2T
i

� 1)w
↵,�

(T
i

, f̂(X
i

))g(X
i

)

/ argmax
k{g(X

i

)}n
i=1k=1, g2F

k-tree

nX

i=1

(2T
i

� 1)w
↵,�

(T
i

, f̂(X
i

))g(X
i

)

/ argmin
g2F

k-tree

nX

i=1

[(2T
i

� 1)w
↵,�

(T
i

, f̂(X
i

))� g(X
i

)]2

(6.24)
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Algorithm 6.2 BalanceBoost for propensity score

Input data: (T
i

, X
i

), i = 1, . . . , n.
Input arguments: �1  ↵, �  0, tree depth k, shrinkage rate ⌫  1, subsam-
pling rate �  1, maximum number of steps N .

Algorithm:
Initialize f̂(x) ⌘ c that maximizes the average score S

↵,�

(f(x),P
n

).
while haven’t reached N steps do

Compute the current weights ŵ corresponding to f̂(x) by equation (6.15).
Randomly generate a subsample I that |I| = b�nc.
Grow a depth-k regression tree ĝ according to equation (6.24) by treating signed

weights {T
i

ŵ
i

}
i2I as responses.

Choose ⌘ to maximize S
↵,�

(f̂(x) + ⌘ĝ(x),P
n

).
Choose c to maximize S

↵,�

(f̂(x) + c+ ⌫⌘ĝ(x),P
n

).
Update f̂new(x) = f̂(x) + c+ ⌫⌘ĝ(x).

end while

return f̂ .

In other words, we need to grow a depth-k tree that it’s closest to the signed weights

(i.e. the gradient) in squared error loss. This is the standard problem of regression

tree.

Algorithm 6.2 provides the pseudo-code for the boosting procedure described

above. Besides the regression tree heuristic, Algorithm 6.2 contains three other tweaks

that are useful in practice:

1. Each gradient step is shrinked by a factor ⌫  1. This avoids overfitting the

model and usually greatly improves the performance of gradient boosting. The

shrinkage factor ⌫ is usually chosen to be very small, e.g. ⌫ < 0.01 (Ridgeway

et al., 2006, Hastie et al., 2009).

2. Each tree ĝ is built by using a subsample of the observed data. The subsampling

rate �  1. When � = 1, no subsampling is used.

3. The estimated weights are most useful if they balance the constant function.

Due to this reason, each gradient step is followed by a update of the intercept

in Algorithm 6.2.
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The boosting algorithm is closely related to forward stagewise regression and l1-

regularized regression (Friedman et al., 2000). In fact, BalanceBoost can be viewed as

a path algorithm to minimize the largest imbalance for functions in F
k-tree. When k =

1, the largest imbalance is in fact the largest Kolmogorov-Smirnov test statistics of

any pretreatment covariate. This observation is illustrated in Figure 6.3. This figure

is similar to the residual-correlation paths in forward stagewise regression (Hastie

et al., 2009, Figure 3.14).
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Figure 6.3: Kolmogorov-Smirnov statistics along the BalanceBoost path (k = 1,
⌫ = 0.01, ⌘ = 1). Dashed line is the 95% asymptotic rejection threshold.

6.4.5 Model selection and inference

After a series of propensity score models are fitted by forward stepwise regression

or regularized regression as described earlier, the remaining question is to select one

model for further statistical inference. This is a standard task in propensity-score
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based approaches. The selected model should best balance all the pretreatment co-

variates. One measurement of covariate imbalance is the absolute standardized di↵er-

ence (Rosenbaum and Rubin, 1985). For the estimated weights ŵ and each predictor

�
k

, k = 1, . . . ,m, it is defined as

d
k

=

���(1/n1)
P

i

:
T

i

=1 ŵi

�
k

(X
i

)� (1/n0)
P

j

:
T

j

=0 ŵj

�
k

(X
j

)
���

s
w

, (6.25)

where s2
w

is the sample variance of the numerator in (6.25). We can also use the t-test

based on (6.25) to verify the means are not significantly di↵erent. Another widely

used criterion is the nonparametric Kolmogorov-Smirnov test. The reader is referred

to the review articles by Caliendo and Kopeinig (2008), Austin and Stuart (2015) for

more practical guidance. In the simulation example in Section 6.7.1, we choose the

propensity score model that has the smallest number of significant two-sample t-tests.

When the covariate balancing scoring rule is used, the selected model is usually close

to the end of the path.

Given a propensity score model, the weighted average treatment e↵ect ⌧ or its

normalized ⌧ ⇤ can be estimated by inverse probability weighting described in (6.14)

and (6.15). To obtain a confidence interval for ⌧ or ⌧ ⇤, we adopt a general method

for estimating sampling variances in Imbens and Rubin (2015, Chapter 19). Let

Var(Y
i

) = �2
i

. Conditioning on the covariates X and the estimated weights ŵ, the

sampling variance of ⌧̂ is given by

Var(⌧̂ |X,w) =
nX

i=1

ŵ2
i

�2
i

. (6.26)

Imbens and Rubin (2015, Section 19.6) described several ways to estimate �2
i

for all

units. In the numerical examples in Section 6.7, we assume additive homoskedastic

noise �2
i

= �2 and use a pilot outcome regression to estimate the noise variance �2.
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6.5 Theoretical aspects

This Section discusses the following four theoretical aspects about CBSR. A first-time

reader more interested in the empirical performance can skip the next two Sections

and go to the numerical examples in Section 6.7.

1. With increasingly complex propensity score model as the sample size grows, any

strongly concave proper scoring rule can provide semiparametrically e�cient

estimate of the weighted average treatment e↵ect (Section 6.5.1).

2. Even if the propensity score model is misspecified, CBSR can still reduce the

bias and the variance of ⌧̂ due to the covariate balancing weights (Section 6.5.2).

3. The Lagrangian dual of the CBSR maximization problem is an entropy maxi-

mization problem with covariate balancing constraints. This observation con-

nects IPW estimators with calibration estimators in survey sampling (Sec-

tion 6.5.3).

4. The Lagrangian duality also allows us to study the bias-variance tradeo↵ in

selecting propensity score models (Section 6.5.4).

6.5.1 Global e�ciency by sieve regression

If a statistician is asked about why maximum likelihood is the predominantly used

scoring rule, most likely he/she will refer to its attractive limiting properties—consistency,

asymptotic normality, and most importantly, e�ciency, i.e. maximum likelihood can

reach the Cramér-Rao bound. However, as mentioned in Section 6.1, the ultimate

goal in an observational study is to infer some average treatment e↵ect. Propensity

score model, no matter fitted by maximizing Bernoulli likelihood or CBSR, is just a

means to this end. A natural question is: is it necessary or even beneficial to fit the

propensity score model most e�ciently by maximum likelihood?

Here we study the e�cient estimation of weighted average treatment e↵ects in

the setting of nonparametric sieve regression. As the sample size n grows, a sieve
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estimator uses progressively more complex models to estimate the unknown propen-

sity score. For example, we can increase the dimensional of the predictors in �(x) in

the GLM (6.5). This approach is used in Hirano, Imbens, and Ridder (2003) to esti-

mate the propensity score by maximum likelihood. Their renowned results claim that

the resulting IPW estimator is globally e�cient for estimating ATE, ATT and other

weighted average treatment e↵ects. It is shown below that the global e�ciency still

holds if the Bernoulli likelihood is changed to the Beta family of scoring rules G
↵,�

,

�1  ↵, �  0 in (6.3) or essentially any strongly concave scoring rule. Therefore

there is no e�ciency gain by sticking to the likelihood criterion.

First, let’s briefly review the sieve logistic regression in Hirano et al. (2003). For

m = 1, 2, . . . , let �
m

(x) = ('1m(x),'2m(x), . . . ,'mm

(x))T be a triangular array of

orthogonal polynomials, which are obtained by orthogonalizing the power series:

 
km

(x) =
Q

d

j=1 x
�

kj

j

, where �
k

= (�
k1, . . . , �kd)T is an d-dimensional multi-index of

nonnegative integers and satisfies
P

d

j=1 �kj 
P

d

j=1 �k+1,j. Let l be the logistic link

function (6.6). Hirano et al. (2003) estimated the propensity score by the following

maximum likelihood rule

✓̂MLE = argmax
✓

nX

i=1

T
i

log
⇣
l�1(�

m

(X
i

)T ✓)
⌘
+ (1� T

i

) log
⇣
1� l�1(�

m

(X
i

)T ✓)
⌘
.

This is a special case of the proper scoring rule maximization (6.4) when the rule S

is S0,0 in the Beta family.

Besides Assumption 6.1 (strong ignorability), the other technical assumptions in

Hirano et al. (2003) are listed below.

Assumption 6.2. (Distribution of X) The support of X is a Cartesian product of

compact intervals. The density of X is bounded, and bounded away from 0.

Assumption 6.3. (Distribution of Y (0), Y (1)) The second moments of Y (0) and

Y (1) exist and g(X, 0) = E[Y (0)|X] and g(X, 1) = E[Y (1)|X] are continuously dif-

ferentiable.

Assumption 6.4. (Propensity score) The propensity score p(X) = P(T = 1|X) is

continuously di↵erentiable of order s � 7d where d is the dimension of X, and p(x)
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is bounded away from 0 and 1.

Assumption 6.5. (Sieve estimation) The nonparametric sieve logistic regression uses

a power series with m = n⌫ for some 1/(4(s/d� 1)) < ⌫ < 1/9.

The most notable assumptions are the compactness of the support of X (As-

sumption 6.2) and the smoothness of p(X) (Assumption 6.4), which are generally

required in nonparametric regression, and the strong overlap assumption that p(X)

is bounded away from 0 and 1 (Assumption 6.4), which is necessary to ensure gener-

alized inverse probability weight (6.9) is bounded. Another important assumption is

the rate m = n⌫ as n!1 (Assumption 6.5).

Theorem 6.2 below is an extension to the main theorem of Hirano et al. (2003).

Compared to the original theorem which always uses the maximum likelihood for any

weighted average treatment e↵ect, the scoring rule is now tailored according to the

estimand as described in Section 6.3.1.

Theorem 6.2. Suppose we use the Beta-family of covariate balancing scoring rules

defined by equations (6.2) and (6.3) with �1  ↵, �  0 and the logistic link (6.6).

Under Assumptions 6.1 to 6.5, the propensity score weighting estimator ⌧̂
↵,�

and its

normalized version ⌧̂ ⇤
↵,�

are consistent for ⌧
↵,�

and ⌧ ⇤
↵,�

. Moreover, they reach the

semiparametric e�ciency bound for estimating ⌧
↵,�

and ⌧ ⇤
↵,�

.

Proof. See Section 6.8.2.

6.5.2 Implications of Covariate Balance

If there is no e�ciency gain in using maximum likelihood, what are the benefits of

using a CBSR so the predictors are automatically balanced? One benefit is that the

inverse weights w are less volatile, thanks to the observation in Section 6.3.2 that

CBSR penalizes extreme inverse probability weights. This Section discusses another

advantage, namely the bias reduction of ⌧̂ when p
✓

(X) is misspecified. This is perhaps

more important in practice, as Box (1976) once said: “all models are wrong, but some

are useful”.
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Here we investigate the bias of ⌧̂ under the global null model. Denote the true

outcome regression functions by g(X, t) = E[Y (t)|X], t = 0, 1. In the global null

model model, g(x, 1) = g(x, 0) for all x, so there is no treatment e↵ect whatsoever.

By definition (6.11) and (6.12), the weighted average treatment e↵ects ⌧ = ⌧ ⇤ are

always equal to 0.

Suppose the propensity score model is specified by p
✓

(X) and the corresponding

weights (6.9) are w
✓

(X). Let ✓̃ = argmax
✓

S(p
✓

(X), p(X)), so p
✓̃

(x) is the best

approximation of p(x) with respect to the scoring rule S. Furthermore, define

w̃(x) =
e(x)w

✓̃

(x, 1)

E[e(X)w
✓̃

(X, 1)]
� (1� e(x))w

✓̃

(x, 0)

E[(1� e(X))w
✓̃

(X, 0)]
.

The asymptotic bias of ⌧̂ ⇤ is given by

bias(⌧̂ ⇤) = E[⌧̂ ⇤] = E
⇥
w̃(X)g(X)

⇤
.

When p
✓

(X) is correctly specified (i.e. p
✓̃

(x) = p(x)), by the definition of GIPW

(6.9), w̃(x) is always zero. Therefore ⌧̂ is asymptotically unbiased under correctly

specified propensity score model. When p
✓

(X) is not correctly specified, the bias of ⌧̂

heavily depends on the covariate balance under the weight w
✓̃

(X). To see this, notice

that the covariate balancing property (6.10) can be written as E[w̃(X)�(X)] = 0.

Therefore, for any ⌘ 2 Rm,

bias(⌧̂ ⇤) = E
h
w̃(X)(g(X)� ⌘T�(X))

i

 E|w̃(X)| ·
✓
sup
x

���g(x)� ⌘T�(x)
���
◆

= 2 sup
x

���g(x)� ⌘T�(x)
��� .

(6.27)

The last inequality is true if �(x) includes an intercept term, since by (6.10),

E[e(x)w
✓̃

(X, 1)] = E[Tw
✓̃

(X, 1)] = 1 = E[(1� T )w
✓̃

(X, 0)] = E[(1� e(X))w
✓̃

(X, 1)].

Equation (6.27) leads to the next result:
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Theorem 6.3. Under Assumption 6.1 and the global null that g(x, 0) = g(x, 1) = g(x)

for all x, the estimator ⌧̂ ⇤ is asymptotically unbiased if

(i) A covariate balancing scoring rule is used and �(x) includes an intercept term,

and

(ii) g(x) is in the linear span of {'1(x), . . . ,'m

(x)}, or more generally inf
⌘

kg(x)�
⌘T�

m

(x)k1 ! 0 as n,m(n)!1.

The last condition says that g(x) can be uniformly approximated by functions in

the linear span of �1(x), . . . ,�m

(x) as m!1. This holds under very mild assump-

tion of g. For example, if the support of X is compact and g(x) is continuous, the

Weierstrass approximation theorem ensures that g(x) can be uniformly approximated

by polynomials. Theorem 6.3 can also be easily extended to the constant treatment

e↵ect model g(x, 1) = g(x, 0) + c. In this case, ⌧ ⇤ = c under any weighting and one

can verify that the upper bound in (6.27) still holds.

Finally we compare the results in Theorem 6.3 and Theorem 6.2. The main dif-

ference is that Theorem 6.2 uses propensity score models with increasing complexity,

whereas Theorem 6.3 assumes uniform approximation for the outcome regression func-

tion. Since the unbiasedness in Theorem 6.3 does not presume any assumption on the

propensity score, the estimator ⌧̂ obtained by CBSR is more robust to misspecified

or overfitted propensity score model.

6.5.3 Langrangian Duality

To understand the fundamental connection between propensity score weighting and

empirical calibration in survey sampling (Deville and Särndal, 1992), here we present

an alternative way to derive CBSR through Lagrangian duality. First, let’s rewrite the

score optimization problem (6.4) by introducing new variables f
i

for each observation

i:

maximize
f,✓

1

n

nX

i=1

S(l�1(f
i

), T
i

)

subject to f
i

= ✓T�(X
i

), i = 1, . . . , n.

(6.28)
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Let the Lagrangian multiplier associated with the i-th constraint be (2T
i

� 1)w
i

/n.

The notation w indicates inverse probability weights in the last section. The reason

of this abuse of notation will become clear in a moment. The Lagrangian of (6.28) is

given by

Lag(f, ✓;w) =
1

n

nX

i=1

S(l�1(f
i

), T
i

) + (2T
i

� 1)w
i

h
f
i

� ✓T�(X
i

)
i
.

By setting the partial derivatives of the Lagrangian equal to 0, we obtain

@Lag

@✓
k

=
1

n

nX

i=1

(2T
i

� 1)w
i

�
k

(X
i

) = 0, k = 1, . . . ,m. (6.29)

@Lag

@f
i

=
1

n

 
@S(l�1(f

i

), T
i

)

@f
i

+ (2T
i

� 1)w
i

!
= 0, i = 1, . . . , n, (6.30)

Equation (6.29) is the same as (6.16), meaning the optimal dual variables w balance

the predictors �1, . . . ,�m

. Equation (6.30) determines w from f . By using (6.2) and

the logistic link (6.6), it turns out that w
i

= w(X
i

, T
i

) is exactly the GIPW weights

defined in (6.9). In conclusion, the weights w are the dual variables of the score

optimization problem (6.4) and are required to balance the predictors �.

The benefit of this derivation is that we can write down the Lagrangian dual

problem of (6.28). In general, there is no explicit form for �1 < ↵, � < 0 because

it is di�cult to invert (6.9), but in the particularly interesting cases ↵ = 0, � = �1
(corresponding to ATT) and ↵ = �1, � = �1 (corresponding to ATE), the dual

problems are algebraically tractable. When ↵ = 0, � = �1, the treated units are

weighted by 1 and the control units are weighted by p̂/(1 � p̂). In this case, the

Lagrangian dual optimization problem is given by

minimize
w�0

X

i

:
T

i

=0

w
i

logw
i

� w
i

subject to
X

i

:
T

i

=0

w
i

�
k

(X
i

) =
X

j

:
T

j

=1

�
k

(X
j

), k = 1, . . . ,m.
(6.31)

In most cases an intercept term is included in the GLM, so the constraints in (6.31)
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imply that
P

T

i

=0 wi

is equal to the number of treated units (a fixed value). There-

fore the dual optimization problem is equivalent to the following maximum entropy

problem

minimize
w�0

X

i

:
T

i

=0

w
i

logw
i

subject to
X

i

:
T

i

=0

w
i

�
k

(X
i

) =
X

j

:
T

j

=1

�
k

(X
j

), k = 1, . . . ,m.
(6.32)

When ↵ = � = �1, the inverse probability weights are always greater than 1. It

turns out that the Lagrangian dual problem in this case is given by

minimize
nX

i=1

(w
i

� 1) log(w
i

� 1)� w
i

subject to
X

i

:
T

i

=0

w
i

�
k

(X
i

) =
X

j

:
T

j

=1

w
j

�
k

(X
j

), k = 1, . . . ,m.

w
i

� 1, i = 1, . . . , n.

(6.33)

The objective functions in (6.31) and (6.33) encourage w to be close to uniform.

They belong to a general distance measure
P

n

i=1 D(w
i

, v
i

) in Deville and Särndal

(1992), where D(w, v) is a continuously di↵erentiable and strongly convex function

in w and achieves its minimum at (the limit) w = v. When the estimand is ATT

(or ATE), the target v is equal to 1 (or 2). The average treatment e↵ect estimators

of this kind are often called “calibration estimators” in the survey sampling litera-

ture, because the weighted sample averages are empirically calibrated to some known

unweighted population averages.

The maximum entropy problem (6.32) appeared first in Hainmueller (2011) to

estimate ATT and is called “Entropy Balancing”. In Section 7.2, we use the primal-

dual connection described above to show Entropy Balancing is doubly robust, which is

stronger than Theorems 6.2 and 6.3. Unfortunately, the double robustness only holds

when the estimand is ATT. This section generalizes the primal-dual connnection to

other weighted average treatment e↵ects. Chan et al. (2015) studied the calibra-

tion estimators with the general distance D and showed the estimator ⌧̂ is globally
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semiparametric e�cient. When the estimand is ATE, Chan et al. (2015) require the

weighted sums of �
k

in (6.33) to be calibrated to
P

n

i=1 �k

(X
i

)/n, too. It is shown

earlier in Section 6.5.1 that this extra calibration is not necessary for semiparametric

e�ciency.

In an extension to Entropy Balancing, Hazlett (2013) proposed to empirically

balance kernel representers instead of ordinary predictors. This corresponds to un-

regularized (� = 0) RKHS regression introduced in Section 6.4.3. The unregularized

problem is unfeasible if the RKHS is rich, so Hazlett (2013) tweaked the objective in

order to find a usable solution.

6.5.4 Bias-variance tradeo↵

The results in Sections 6.5.2 and 6.5.3 allow us to study the fundamental bias-variance

in selecting a propensity score model. Consider the regularized regression approach

introduced in Section 6.4.2. By the Karush-Kuhn-Tucker conditions of the regularized

score maximization problem (6.4), the solution ✓̂
�

satisfies (for any a � 1 and � � 0)

������
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������
 � · |(✓̂

�

)
k

|a�1, k = 1, . . . ,m.

(6.34)

The equality in (6.34) holds if (✓̂
�

)
k

6= 0, which is true unless a = 1 and � is large.

This suggests that in general the predictors �(x) are not exactly balanced when � > 0.

Following Section 6.5.2, we assume the null model E[Y (1)|X] = E[Y (0)|X] = g(x)

to study how covariate imbalance a↵ects the bias of ⌧̂ = ⌧̂
�

. Moreover, let’s assume

the outcome regression function is in the linear span of the predictors, i.e. g(x) =
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g
⌘
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P
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(x) . The finite sample bias of ⌧̂
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The last inequality is due to Hölder’s inequality and is tight. Hence we have

max
⌘

bias
⌘

(⌧̂
�

)

k⌘k
a

= �k✓̂
�

ka�1
a

. (6.35)

The next proposition says that the right hand side of equation (6.35) is decreasing as

the degree of regularization � becomes smaller. This is consistent with our intuition

that the more we regularize the propensity score model, the more bias we get.

Proposition 6.3. Given a strictly proper scoring rule S and a link function l such

that S(l�1(f), t) is strongly concave and second order di↵erentiable in f 2 R for

t = 0, 1, let ✓̂
�

be the solution to (6.18) and (6.19) for a given a � 1. Then �k✓̂
�

ka�1
a

is a strictly increasing function of � > 0.

Proof. See Section 6.8.3.

The bias-variance tradeo↵ is more apparent in the Lagrangian dual problem of

(6.18). Consider the case that the estimand is ATT and the corresponding scoring

rule is ↵ = 0 and � = �1. When �1(x) = 1 and J(✓) =
P

m

k=2 |✓k|a/a so we do not
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penalize the intercept, the dual problem of (6.18) is given by

minimize
w�0

X

i

:
T

i

=0

w
i

logw
i

subject to b
k

=
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i
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), k = 1, . . . ,m.

b1 = 0, kbk
a/(a�1)  r(�),

(6.36)

where r(�) is some increasing function of �. In (6.36), the objective function measures

the closeness between w and the uniform weights and the constraints bound the

covariate imbalance with respect to the functions �. They are related, respectively,

to the variance and bias of the estimator ⌧̂ . When � ! 0, the solution of (6.36)

converges to the weights w that minimizes the a/(a�1)-norm of covariate imbalance.

The limit of r(�) when � ! 0 can be 0 or some positive value, depending on if the

unregularized score maximization problem (6.4) is feasible or not. When � ! 1,

the solution of (6.36) converges to uniform weights (i.e. no adjustment at all) whose

estimator ⌧̂ has smallest variance. Similar arguments hold if we change the estimand

(e.g. to ATE) and the scoring rule accordingly.

The kernel method introduced in Section 6.4.3 is a special case of the regularized

regression with potentially infinite-dimensional predictors. For RKHS regressions,

the maximum bias (6.35) under the null model is given by

max
g2H

K

bias
g

(⌧̂
�

)

kgkH
K

= �kfkH
K

.

Therefore, the bias of ⌧̂ is controlled for a rich class of outcome regression functions.

6.6 Discussions

The covariate balancing scoring rule (CBSR) is largely inspired by some recent ap-

proaches that directly incorporate covariate balance in propensity score estimation.

Motivated by Graham et al. (2012), Imai and Ratkovic (2014) proposed to augment

the Bernoulli likelihood with the covariate balancing estimating equations, hoping
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they can robustify the propensity score model. These estimating equations are exactly

the first-order conditions of maximizing CBSR. However, our derivation of CBSR

shows that di↵erent estimating equations correspond to di↵erent estimands and there

is little reason to combine them. In fact, Imai and Ratkovic (2014) also found in their

simulation study that just using the covariate balancing estimating equations usually

performs better. Another distinction is that Imai and Ratkovic (2014) solved the es-

timating equations by generalized method of moments or empirical likelihood. Those

generic methods for over-identified estimating equations are generally not convex. In

this Chapter, we identify the scoring rules corresponding to the estimating equation

(6.10) and Proposition 6.2 shows that they are concave for estimating ATE and ATT

with the logistic link function. Convex optimization methods can be used to solve

the score maximization problem very e�ciently.

Another related approach is Hainmueller (2011)’s Entropy Balancing which spe-

cializes in estimating ATT. It operates by maximizing the Shannon entropy of sample

weights subject to exact covariate balance. Zhao and Percival (2015) found that the

Lagrangian dual of Entropy Balancing fits a logistic propensity score model with a

loss function di↵erent from the Bernoulli likelihood. We generalize this approach to

general estimands.

To summarize, the decision theoretical approach we take has a number of advan-

tages:

1. A proper scoring rule generates Fisher consistent estimates of the propensity

score, allowing us to study the asymptotic properties of the IPW estimators.

2. The Lagrangian duality connects IPW estimators with the calibration estima-

tors in survey sampling (Deville and Särndal, 1992). It also demonstrates an

explicit bias-variance trade-o↵ with regularized propensity score models.

3. The scoring rules (loss functions) can be plotted and interpreted visually, show-

ing how propensity score estimation should be treated di↵erently than a stan-

dard classification problem. CBSR penalizes more heavily on larger inverse

probability weights hence generates a more stable estimator.
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4. The convex loss function opens up numerous opportunities to use machine learn-

ing algorithms to estimate the propensity score. These algorithms are usually

designed to optimize predictive performance. With the covariate balancing scor-

ing rules as the objective, the machine learning algorithms now try to optimize

covariate balance between the treatment groups.

6.7 Numerical examples

We use two examples (one simulation and one real data) to demonstrate the e↵ec-

tiveness of CBSR and the proposed adaptive methods.

6.7.1 A simulation example

This example due to Kang and Schafer (2007) is also used to generate Figure 6.1 in the

Introduction. The artificial dataset consists of i.i.d. random variables (X
i

, Z
i

, T
i

, Y
i

), i =

1, . . . , n, where X
i

, Y
i

and T
i

are always observed and Z
i

is never observed. To gener-

ate this data set, X
i

is a 4-dimensional vector distributed as N(0, I4); Zi

is computed

by first applying the following transformation:

Z
i1 = exp(X

i1/2),

Z
i2 = X

i2/(1 + exp(X
i1)) + 10,

Z
i3 = (X

i1Xi3 + 0.6)3,

Z
i4 = (X

i2 +X
i4 + 20)2,

and then normalizing individual variables of Z to have sample mean 0 and variance

1.

There are in total four settings in this example. In the first setting (top-left panel

in Figure 6.4), Y
i

is generated by Y
i

= g(X, T
i

) without any additional noise, where

g(X, 0) = 210 + 27.4X
i1 + 13.7X

i2 + 13.7X
i3 + 13.7X

i4,

and g(X, 1) is either equal to g(X, 0) (column “zero” in Figure 6.4) or g(X, 0) + 10
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(column “constant” in Figure 6.4). The true propensity scores are generated by the

logistic model p(X
i

) = l�1(f(X
i

)), f(X
i

) = �X
i1 + 0.5X

i2 � 0.25X
i3 � 0.1X

i4. In

this setting, both Y and T can be correctly modeled by (generalized) linear model of

the observed covariates X. In the other settings, at least one of the propensity score

model and the outcome regression model is non-linear in X. In order to achieve this,

the data generating process described above is altered such that Y or T (or both)

is linear in the unobserved Z instead of the observed X, though the parameters are

kept the same. In these three scenarios, at least one of the two functions f and g are

nonlinear in X.

For each setting, 200 replicas of dataset of size n = 200 are drawn. The logistic

link function is always used and di↵erent scoring rules in the Beta-family (6.3) are

applied. The predictor vector � used is �(X) = (X1, X2
1 , X2, X2

2 , X3, X2
3 , X4, X2

4 ).

After an estimated propensity score model is obtained, we use the normalized IPW

estimator ⌧̂ ⇤�1,�1 to estimate ATE and ⌧̂ ⇤0,�1 to estimate ATT. The covariate imbalance

with respect to � is shown earlier in Figure 6.1.

Figure 6.4 shows the boxplots of these estimates under di↵erent settings. It is

clear that the covariate balancing scoring rules (CBSR) generate much more stable

estimates than the Bernoulli likelihood (MLE). Furthermore, in the two left panels

the true logit f is linear in X so the propensity score model is correctly specified.

In the two top panels the true outcome regression function g0 is linear in X so the

unbiasedness is guaranteed by Theorem 6.3. As expected, the weighting estimators

given by CBSR are unbiased across these three panels (besides the bottom-right

panel). If instead the Bernoulli likelihood criterion is used to estimate the propensity

score model, the weighting estimator is biased when f is non-linear in X even if g is

linear in X (top-right panel). Even if f is linear in X so the propensity score model

is correctly specified, the CBSR estimators have much smaller variance than MLE.

Lastly, in the bottom-right panel where both f and g are non-linear, CBSR still has

smaller bias and variance.

Next we test the adaptive strategies described in Section 6.4. Here we consider

three adaptive strategies—forward stepwise regression and two reproducing kernel

Hilbert space (RKHS) regressions. In the forward stepwise regression, we use all



CHAPTER 6. TAILORING THE PROPENSITY SCORE MODEL 69
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Figure 6.4: Estimate of average treatment e↵ects (ATE or ATT) using di↵erent scor-
ing rules under the four settings. The four boxes in each group with di↵erent colors
correspond to the Beta scoring rule (6.3) with 1. ↵ = � = �1; 2. ↵ = 0, � = �1; 3.
↵ = � = 0; 4. ↵ = � = 0 (Bernoulli likelihood). In the first and third boxes, the
inverse probability weights corresponding to ATE (↵ = � = �1 in equation (6.15)) is
used. In the second and fourth boxes, the inverse probability weights corresponding
to ATT (↵ = 0, � = �1) is used. The gray dashed lines correspond to the true
treatment e↵ect: 0 for group “zero” and 10 for group “constant”.
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the two-way interactions of degree-two polynomials (in total 32 predictors) to allow

sophisticated propensity score models. In the two RKHS regressions, we use the

Gaussian kernel

K(x, x0) = exp(��kx� x0k2), x, x0 2 R4,

with � equal to 0.2 and 0.5. After fitting a path of propensity score models (indexed by

step for forward stepwise and regularization parameter � for RKHS), for each strategy

we choose the model that has the smallest number of significant two-sample t-tests

as described in Section 6.4.5. Finally, the standard errors and confidence intervals by

assuming homoscedasticity in (6.26) and using a pilot outcome regression (predictors

are the observed X). Since a fairly sophisiticated propensity score model can be

fitted, we use n = 1000 samples and set g(X, 1) = g(X, 0) to test all the methods.

Table 6.2 shows the performance of the six di↵erent combinations of loss function

and adaptive strategy in the four simulation settings. CBSR clearly outperforms

Bernoulli likelihood. In almost all scenarios and no matter what adaptive strategy is

used, the root mean squared error (RMSE) of CBSR is less than half of the RMSE of

Bernoulli likelihood. The confidence intervals obtained by using Bernoulli likelihood

also perform poorly. In many scenarios the actual coverage is less than 50%, whereas

the nominal coverage is 95%. CBSR’s confidence intervals have close to or over the

nominal 95% coverage in almost all scenarios.

The two adaptive strategies (forward stepwise and RKHS) perform similarly.

When using CBSR as the loss function, forward stepwise seems to have slightly smaller

RMSE, but kernel methods can have the better coverage in some scenarios. In prac-

tice, the user may want to choose an adaptive strategy that is most convenient for

the target application. The strength and weakness of these methods are discussed in

Section 6.4.

6.7.2 A Real Data Example

This Section studies the National Supported Work (NSW) Demonstration which was

previously analyzed by LaLonde (1986), Dehejia and Wahba (1999), Smith and Todd
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f (true PS) g (true OR) estimand loss strategy bias RMSE coverage
linear linear ATE Bernoulli forward stepwise �1.27 2.43 50.5

kernel (0.2) �2.77 3.18 22.5
kernel (0.5) �3.05 3.45 17.5

CBSR forward stepwise �0.24 0.98 90.0
kernel (0.2) �0.50 1.16 90.5
kernel (0.5) �1.41 1.77 63.0

ATT Bernoulli forward stepwise �2.92 6.28 55.5
kernel (0.2) �7.30 11.08 29.0
kernel (0.5) �2.70 3.34 27.5

CBSR forward stepwise �0.24 1.19 91.5
kernel (0.2) �1.09 2.78 90.5
kernel (0.5) �1.91 2.49 63.5

nonlinear ATE Bernoulli forward stepwise �1.05 2.17 82.5
kernel (0.2) �1.90 2.52 74.0
kernel (0.5) �2.13 2.77 68.0

CBSR forward stepwise �0.46 1.17 99.5
kernel (0.2) �0.46 1.17 100.0
kernel (0.5) �1.10 1.62 96.0

ATT Bernoulli forward stepwise �0.93 3.87 87.5
kernel (0.2) �3.16 6.64 65.5
kernel (0.5) �0.05 1.82 94.0

CBSR forward stepwise �0.49 1.37 99.0
kernel (0.2) �0.27 2.05 99.0
kernel (0.5) �0.59 1.83 99.5

nonlinear linear ATE Bernoulli forward stepwise �1.55 2.07 45.5
kernel (0.2) �2.28 2.75 31.0
kernel (0.5) �2.54 2.97 24.5

CBSR forward stepwise �0.27 1.02 86.5
kernel (0.2) �0.40 1.10 92.5
kernel (0.5) �1.19 1.61 64.5

ATT Bernoulli forward stepwise �0.45 1.94 78.5
kernel (0.2) �0.88 2.43 64.0
kernel (0.5) �0.92 1.84 62.0

CBSR forward stepwise �0.13 1.14 89.0
kernel (0.2) �0.36 1.46 93.5
kernel (0.5) �0.83 1.61 82.5

nonlinear ATE Bernoulli forward stepwise �2.25 2.75 64.5
kernel (0.2) �2.90 3.37 51.0
kernel (0.5) �3.29 3.69 41.5

CBSR forward stepwise �0.61 1.01 100.0
kernel (0.2) �0.73 1.26 100.0
kernel (0.5) �1.88 2.19 86.5

ATT Bernoulli forward stepwise �0.12 1.82 96.5
kernel (0.2) �0.02 2.34 96.0
kernel (0.5) �0.37 1.64 95.5

CBSR forward stepwise �0.39 1.12 100.0
kernel (0.2) �0.35 1.46 100.0
kernel (0.5) �1.01 1.74 99.5

Table 6.2: Performance of di↵erent loss functions combined with adaptive strategies—
forward stepwise and kernel method (Gaussian kernel with bandwidth parameter 0.2 and
0.5). In each case, the propensity score model is selected to minimize the number of sig-
nificant covariate imbalance tests. Compared to the Bernoulli likelihood, maximizing the
covariate balancing scoring rule (CBSR) reduces the root mean square error (RMSE) by
more than a half for most settings. CBSR’s confidence intervals also have the superior
coverage (nominal level is 95%).
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(2005) and many other authors. The NSW Demonstration was a federally and pri-

vately funded program implemented in the 1970s, which program provided transi-

tional and subsidized work experience for a period of 6–18 months to individuals who

had faced economic and social problems prior to the enrollment in the program. The

pre-treatment covariates include earnings, education, age, ethnicity, and marital sta-

tus, and the outcome of interest in LaLonde (1986) is the post-intervention earnings

in 1978. We use the experimental subsample taken by Dehejia and Wahba (1999)

to demonstrate our methods, which include 185 treated and 260 control observations

that joined the program early enough for the retrospective earnings information in

the year 1974. To evaluate the non-experimental methods, we use the Current Pop-

ulation Survey (CPS) data extracted by LaLonde (1986) as the control group, which

contain 15992 observations. The reader is referred to the previous articles listed in

this paragraph for more detailed information on this dataset.

The observational methods are evaluated in two scenarios:

1. Compare the experimental treated group with the non-experimental control

group. The average treatment e↵ect estimators can be compared with the

experimental benchmark, which is 1794.3 (standard error 632.9) by a linear

regression of the earnings in 1978 on the treatment assignment.

2. Compare the experimental control group with the non-experimental control

group. Since both groups did not receive treatment, the treatment e↵ect is

always zero (the null case in Section 6.5.2).

Since the non-experimental control group is very large and has very di↵erent covariate

distribution to the experimental group, we only consider the average treatment e↵ect

on the treated (ATT) in this example. Using Table 6.1, the CBSR rule in this case

is S0,�1.

First, we apply the forward stepwise regression in Algorithm 6.1. To generate pre-

dictors �(X), we use all the discrete covariates (race, married, no degree, no earning

in 1974, no earning in 1975), all the continuous covariates (age, year of education,

earning in 1974, earning in 1975) and their squares, and the first-order interactions

of all these variables. This results in a 94-dimensional vector � of predictors. In each
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scenario, two scoring rules, the Bernoulli likelihood S0,0 and the covariate balancing

scoring rule S0,�1, are used, and the covariate imbalance and the estimator ⌧̂ are

plotted along the stepwise path.

The results of the forward stepwise regressions can be found in Figure 6.5. Com-

pared to the Bernoulli likelihood, CBSR requires a stronger condition for the existence

of the solution (Zhao and Percival, 2015), so in both scenarios CBSR stops early (71

steps in scenario 1 and 23 steps in scenario 2). Nevertheless, CBSR is much bet-

ter at reducing covariate imbalance as shown in Figures 6.5a and 6.5b. In fact, at

least 10 predictors have standardized di↵erence greater than 20% across the entire

path when the Bernoulli likelihood is used, while some authors have suggested that a

standardized di↵erence above 10% can be deemed substantial (Normand et al., 2001,

Austin and Stuart, 2015). When a two-sample t-test is used to compare the mean

of the predictors, less than 20% of the 94 tests are insignificant with the Bernoulli

likelihood, also implying insu�cient covariate balance. On the contrary, CBSR suc-

cessfully balances most predictors in both scenarios.

Figures 6.5c and 6.5d show the estimate of ATT along the path. Interesting, by

just including the first predictor most of the bias of estimating ATT is corrected.

Both scoring rules give similar estimates and are consistent with the experimental

benchmarks. However, as discussed above, the weights generated by maximizing

the Bernoulli likelihood are unacceptable to many applied researchers. Switching

to CBSR solves this problem, though the ATT estimates are not very di↵erent in

this particular example. Additionally, when using CBSR the standard error of ⌧̂ is

smaller. This can be understood from the remark in Section 6.3.2 that CBSR tries

to avoid large weights.

Next, we apply the kernel method in Section 6.4.3 and the results are presented in

Figure 6.6. We use the Gaussian kernel K(x, x0) = exp(��kx � x0k2) with � = 0.15

and x = (black, hispanic, no degree, married, age/5, education/3, re74/4000,

re75/4000). The first four entries in x are indicator variables, and re74 (re75) stands

for the annual earning of the person in the year 1974 (1975). Because the kernel

matrix is a large n ⇥ n matrix, we use the subsample CPS2 extracted by Dehejia

and Wahba (1999) that contains n = 2369 non-experimental controls. Overall, these
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two plots are similar to those for the forward stepwise regressions. Notice that the

confidence intervals of ATT are wider when using the kernel method. This loss of

e�ciency is compensated by the improved robustness, as the propensity score weights

approximately balance infinite many covariate functions (Section 6.4.3).

In conclusion, the two adaptive strategies work very well in the NSW job train-

ing example and CBSR continues to balance the sample covariates better than the

Bernoulli likelihood.

6.8 Theoretical proofs

6.8.1 Proof of Proposition 6.2

The same result can be found in Buja et al. (2005, Section 15). For completeness

we give a direct proof here. Denote p = l�1(f) 2 (0, 1) and notice that df/dp =

(l�1)0(f) = p(1� p). By (6.2), we have

d

df
S(l�1(f), 1) = (1� p)G00(p)(l�1)0(f) = p↵(1� p)�+1,

d

df
S(l�1(f), 0) = �pG00(p)(l�1)0(f) = �p↵+1(1� p)�, and

d2

df 2
S(l�1(f), 1) = ↵p↵(1� p)�+2 � (� + 1)p↵+1(1� p)�+1,

d2

df 2
S(l�1(f), 0) = �(↵ + 1)p↵+1(1� p)�+1 + �p↵+2(1� p)�.

The conclusions immediate follow by letting the second order derivatives be less than

or equal to 0.

6.8.2 Proof of Theorem 6.2

The proof is a simple modification of the proof in Hirano et al. (2003). In fact,

Hirano et al. (2003) only proved the convergence of the estimated propensity score

up to certain order. This essentially suggests that the semiparametric e�ciency of ⌧̂

does not heavily depend on the accuracy of the sieve logistic regression.
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(a) Covariate imbalance: experimental
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(b) Covariate imbalance: experimental
control vs. non-experimental control.
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Figure 6.5: Forward stepwise regressions for the LaLonde (1986) dataset. Top panels:
Covariate imbalance is in terms of standardized di↵erence. The curves in the plot are the
1st, 5th, 10th, and 25th largest standardized di↵erence among the 94 predictors (solid lines),
and the percentage of insignificant two-sample t-tests comparing the mean of each predictor
in the treatment and the weighted control (dotted line). Bottom panels: estimated ATT
with 95% confidence interval.
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Figure 6.6: Reproducing kernel method for the LaLonde (1986) dataset. Top panels:
Covariate imbalance is in terms of standardized di↵erence. The curves in the plot are the
1st, 5th, 10th, and 25th largest standardized di↵erence among the 94 predictors (solid lines),
and the percentage of insignificant two-sample t-tests comparing the mean of each predictor
in the treatment and the weighted control (dotted line). Bottom panels: estimated ATT
with 95% confidence interval.
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To be more specific, only three properties of the maximum likelihood rule S = S0,0

are used in Hirano et al. (2003, Lemmas 1,2):

1. ✓̃ = argmax
✓

S(p
✓

, p
✓̃

) (line 5, page 19), this is exactly the definition of a strictly

proper scoring rule (6.1);

2. The Fisher information matrix

@2

@✓@✓T
S(p

✓

, p
✓̃

) = E
✓̃

8
<

:

"
d2

df 2
S(l�1(f), T )

���
f=�(X)T ✓

#
�(X)�(X)T

9
=

;

has all eigenvalues uniformly bounded away from 0 for all ✓ and ✓̃ in a compact

set in Rm, where the expectation on the right hand side is taken over X and

T |X ⇠ p
✓̃

.

3. As m ! 1, with probability tending to 1 the observed Fisher information

matrix

@2

@✓@✓T
1

n

nX

i=1

S(p
✓

(X
i

), T
i

) =
1

n

nX

i=1

"
d2

df 2
S(l�1(f), T

i

)
���
f=�(X

i

)T ✓

#
�(X

i

)�(X
i

)T

has all eigenvalues uniformly bounded away from 0 for all ✓ in a compact set of

Rm (line 7–9, page 21).

Because the approximating functions � are obtained through orthogonalizing the

power series, we have E[�(X)�(X)T ] = I
m

and one can show its finite sample version

has eigenvalues bounded away from 0 with probability going to 1 as n!1. Therefore

a su�cient condition for the second and third properties above is that S(l�1(f), t) is

strongly concave for t = 0, 1. In Proposition 6.2 we have already proven the strong

concavity for all �1  ↵, � � 1 except for ↵ = �1, � = 0 and ↵ = 0, � = �1. In

these two boundary cases, among S(l�1(f), 0) and S(l�1(f), 1) one score function is

strongly concave and the other score function is linear in f . One can still prove the

second and third properties by using Assumption 6.4 that the propensity score is

bounded away from 0 and 1.
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6.8.3 Proof of Proposition 6.3

The conclusion is trivial for a = 1. Denote

h(f, t) =
d

df
S(l�1(f), t) and h0(f, t) =

d

df
h(f, t), t = 0, 1.

Because S(l�1(f), t) is concave in f , we have h0(f, t) < 0 for all f . The first-order

optimality condition of (6.18) is given by

1

n

nX

i=1

h(✓̂T
�

�(X
i

), T
i

)�
k

(X
i

) + �|(✓̂
�

)
k

|a�1sign((✓̂
�

)
k

) = 0, k = 1, . . . ,m.

Let r✓̂
�

be the gradient of ✓̂
�

with respect to �. By taking derivative of the identity

above, we get

2

4 1
n

nX

i=1

h0(✓̂T
�

�
i

, T
i

)�
i

�T

i

+ �(a� 1)diag(|✓̂
�

|a�2)

3

5r✓̂
�

= �|✓̂
�

|a�1sign(✓̂
�

),

where we used the abbreviation �
i

= �(X
i

) and ✓a = (✓a1 , . . . , ✓
a

m

). For brevity, let’s

denote

H =
1

n

nX

i=1

h0(✓̂T
�

�
i

, T
i

)�
i

�T

i

� 0 and G = �(a� 1)diag(|✓̂
�

|a�2).

For a > 1, the result is proven by showing the derivative of �k✓̂
�

ka�1
a

is greater
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than 0.

d

d�

⇣
�k✓̂

�

ka�1
a

⌘
= k✓̂

�

ka�1
a

+ �
d

d�

"
mX

j=1

���(✓̂
�

)
k

���
a

#(a�1)/a

= k✓̂
�

ka�1
a

+ �(a� 1)k✓̂
�

k�1
a

mX

j=1

���(✓̂
�

)
k

���
a�1

(r✓̂
�

)
k

sign((✓̂
�

)
k

)

= k✓̂
�

ka�1
a

� �(a� 1)k✓̂
�

k�1
a

(|✓̂
�

|a�1)T (H +G)�1|✓̂
�

|a�1

> k✓̂
�

ka�1
a

� �(a� 1)k✓̂
�

k�1
a

(|✓̂
�

|a�1)TG�1|✓̂
�

|a�1

= 0.



Chapter 7

Outcome Regression and Doubly

Robust Inference

So far we have given a comprehensive review of methods based on the treatment

assignment mechanism in Chapter 5 and provided some new approaches in Chapter 6.

These methods only model the relation between the covariates X and the treatment

assignment T and ignores the relation between X and the response Y . This is in

some sense an attractive property because we are only interested in the causal e↵ect

of T . Once a propensity score model is obtained, the inference for the average causal

e↵ect is relatively simple. Since we have not looked at Y yet, confidence interval can

be constructed by estimating the variance of Y as in (6.26). This Chapter considers

to augment this inference by modeling the relation between X and Y .

7.1 Outcome regression

Suppose we make the structural assumption that

E[Y (t)|X] = �0 + ⌧ t+ �T

1 X + �T

2 tX, t = 0, 1, (7.1)

and suppose E[X] = 0. Then the conditional average treatment e↵ect E[Y (1)|X] �
E[Y (0)|X] = ⌧ + �T

2 X and the average treatment e↵ect (ATE) is ⌧ . In principle, the

80
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parameters in (7.1) can be estimated by linear regression such as the ordinary least

squares. This technique is called outcome regression, in contrast to the propensity

score methods described in the last two Chapters.

The model (7.1) can be rewritten as two separate regressions:

E[Y (0)|X] = g0(X) and E[Y (1)|X] = g1(X). (7.2)

Once the regression functions g0 and g1 are estimated, the ATE can be estimated by

⌧̂OR =
1

n

nX

i=1

(ĝ1(Xi

)� ĝ0(Xi

)). (7.3)

It is easy to verify that this is equivalent to ⌧̂ obtained by fitting (7.1) jointly when

both g0 and g1 are linear in x.

Consistency of the outcome regression estimator (7.2) depends on the consistency

of ĝ0 and ĝ1. When the regression functions are modeled parametrically, ⌧̂OR is

consistent only if the model specification is correct. This is similar to propensity score

methods in Chapter 5 whose consistency relies on correctly specifying the propensity

score model. Practically, it is beneficial to fit a fairly complicated model for g0 and

g1. as commonly done for the propensity score model too (Chapter 6).

7.2 Doubly robust estimation

Robins et al. (1994) introduce a method called augmented inverse probability weight-

ing to combine propensity score and outcome regression in estimating the average

treatment e↵ect. Given an (estimated) propensity score model p̂(x) and an estimated

outcome regression model ĝ
t

(x), t = 0, 1, the ATE can be estimated by

⌧̂DR = ⌧̂OR +
nX

i=1

(2T
i

� 1)ŵ(X
i

, T
i

)
�
Y
i

� ĝ
T

i

(X
i

)
�
, (7.4)

where ŵ(X
i

, T
i

) is computed from p̂ by (6.17). This estimator can be viewed as an

improvement over the outcome regression estimator. The second term in (7.4) replaces



CHAPTER 7. OUTCOMEREGRESSION ANDDOUBLY ROBUST INFERENCE82

the response Y
i

in the IPW estimator ⌧̂ by the residual Y
i

� ĝ
T

i

(X
i

). Therefore, it

estimates the bias of ⌧̂OR due to model misspecification. Following this reasoning, it is

easy to verify that ⌧̂DR is consistent if p̂ is consistent or {ĝ
t

, t = 0, 1} are consistent, or

both. This property is called “double robustness” by Robins et al. (1994). Numerous

doubly robust estimators have been proposed since then, see Bang and Robins (2005),

Kang and Schafer (2007), Tan (2006, 2010) for some review.

Double robustness is also closely related to covariate balance weights discussed in

Section 5.3 and Chapter 6. Next we present the main result of Zhao and Percival

(2015) which shows that the Entropy Balancing estimator given by (6.32) is doubly

robust. Notice that Hainmueller (2011)’s original proposal does not explicitly model

propensity score or outcome regression.

Theorem 7.1. Let Assumption 6.1 (strong ignorability) and the overlap assumption

0 < P(T = 1|X) < 1 be given. Additionally, assume the expectation of �(x) (the co-

variate function being balanced) exists and Var(Y (0)) <1. Then Entropy Balancing

is doubly robust in the sense that

1. If logit(p(x)) or g0(x) is linear in �
k

(x), k = 1, . . . ,m, then �̂EB is statistically

consistent.

2. Moreover, if logit(e(x)), g0(x) and g1(x) are all linear in �
k

(x), k = 1, . . . , R,

then �̂EB reaches the semiparametric variance bound of � derived in Hahn (1998,

Theorem 1) with unknown propensity score.

We give two proofs of the first claim in Theorem 7.1. The first proof reveals

an interesting connection between the primal-dual optimization problems and the

statistical property double robustness. The second proof uses a stabilization trick in

Robins et al. (2007). The reader is referred to Zhao and Percival (2015) for the proof

of the second claim in Theorem 7.1.

First proof (sketch). The consistency under the linear model of logit(p(x)) is a con-

sequence of the Fisher consistency of the scoring rule S0,�1. See Section 6.3.1. The

consistency under the linear model of Y (0) can be proved by expanding g0(X) and
P

T

i

=0 wi

Y
i

. Here we provide an indirect proof by showing that augmenting Entropy
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Balancing with a linear outcome regression as in Equation (7.4) does not change

the estimator, and hence Entropy Balancing is doubly robust. This fact can be

proved by a few lines of algebra: let the estimated outcome regression model be

ĝ0(x) =
P

p

j=1 �̂jcj(x), then

⌧̂DR � ⌧̂EB =
X

T

i

=0

ŵ
i

ĝ0(Xi

)� 1

n1

X

T

i

=0

ĝ0(Xi

)

=
X

T

i

=0

ŵ
i

pX

k=1

�̂
k

�
k

(X
i

)� 1

n1

X

T

i

=1

pX

j=1

�̂
j

�
j

(X
i

)

=
pX

k=1

�̂
k

0

@
X

T

i

=0

ŵ
i

�
j

(X
i

)� 1

n1

X

T

i

=1

�
j

(X
i

)

1

A

= 0.

Therefore, by enforcing covariate balancing constraints, Entropy Balancing implicitly

fits a linear outcome regression model and is consistent for ⌧ under that working

model.

Second proof. This proof is pointed out by an anonymous reviewer. In a discussion

of Kang and Schafer (2007), Robins et al. (2007) indicated that one can stabilize

the standard doubly robust estimator in a number of ways. Specifically, one trick

suggested by Robins et al. (2007, Section 4.1.2) is to estimate the propensity score,

say p̃(x), by the following estimating equation

nX

i=1

"
(1� T

i

)p̃(X
i

)/(1� p̃(X
i

))P
n

i=1(1� T
i

)p̃(X
i

)/(1� p̃(X
i

))
� T

iP
n

i=1 Ti

#
ĝ0(Xi

) = 0. (7.5)

Then one can estimate the ATT by the usual IPW estimator with p̂(X
i

) replaced by

p̃(X
i

). This estimator is sample bounded (the estimator is always within the range of

observed values of Y ) and doubly robust with respect to the parametric specifications

of p̃(x) = p̃(x; ✓) and ĝ0(x) = ĝ0(x; �). The only problem with (7.5) is it may not have

a unique solution. However, when logit(p(x)) and g0(x) are modeled linearly in �(x),

(7.5) corresponds to the first order condition of the optimization problem maximizing
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the score S0,�1 (the dual of Entropy Balancing). Since Entropy Balancing is a strictly

convex optimization problem, it has an unique solution and p̃(X; ✓) is the same as the

Entropy Balancing estimate p̂(X; ✓). As a consequence, ⌧̂EB is also doubly robust.

Notice that the reasoning in the first proof would work for any empirically cal-

ibrated weighting estimator. That is, if we have weights {ŵ
i

, i = 1, . . . , n} that

empirically balance �(x), then augmenting the linear outcome regression estimator

with �(x) being the predictor does not change anything. However, not all empirically

calibrated weights have the propensity score interpretation as Entropy Balancing.

Finally, it is easy to extend Entropy Balancing to accommodate arbitrary outcome

regression model. The trick is to include the estimated g0(x) in the covariate functions

to be balanced. Then Theorem 7.1 implies that the extended Entropy Balancing

estimator is doubly robust with respect to logistic propensity score model and the

given outcome regression model ĝ0.

7.3 Robust inference of ATT

We can improve the adaptive procedures in Section 6.4 by an outcome regression

model. For simplicity, let’s focus on estimating the ATT, so the corresponding scoring

rule is S0,�1. In this case, it is not di�culty to show (notice that ŵ
i

= ŵ(X
i

, T
i

) = 1/n1

if T
i

= 1)

⌧̂DR =
nX

i=1

(2T
i

� 1)ŵ
i

(Y
i

� ĝ0(Xi

)).
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Therefore, we have the following decomposition of estimation error

������
⌧̂DR � 1

n1

X

T

i

=1

(g1(Xi

)� g0(Xi

))

������

=

������

nX
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(2T
i

� 1)ŵ(X
i

, T
i

)(Y
i

� ĝ0(Xi

))� 1

n1

X

T

i

=1

(g1(Xi

)� g0(Xi

))

������
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������

nX
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(2T
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� 1)ŵ
i

✏
i

������
+

������
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=1

(2T
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� 1)ŵ
i

(g0(Xi

)� ĝ0(Xi
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������

N
0

@0,
nX

i=1

ŵ2
i

�2
i

1

A+ kĝ0 � g0k · sup
kgk=1

������

X

T

i

=1

(2T
i

� 1)ŵ
i

g(X
i

)

������
.

(7.6)

The last supremum term is estimated along the forward stepwise or boosting algo-

rithm. For kernel regression, it can also be estimated by an unbiased estimator in

Gretton et al. (2012, Lemma 6).

To use (7.6), we need to find sample estimates or upper bounds of �2
i

and kĝ0�g0k.
If we assume homoskedastic Gaussian noise �2

i

= �2, then

n�2 + kĝ0 � g0k2 = prediction error(ĝ0, {Xi

, i = 1, . . . , n}).

The prediction error of ĝ0 can be estimated relatively easily (e.g. by cross validation).

Let MMD(ŵ) denote the maximum mean discrepancy

MMD(ŵ) = sup
kgk=1

������

X

T

i

=1

(2T
i

� 1)ŵ
i

g(X
i

)

������
. (7.7)

This is a quantity determined by when our adaptive procedure of propensity score

estimation stops. Our discussion above motivates the following two model selection

criteria:
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1. Minimize the following upper bound of the MSE

MSE (⌧̂DR) 
nX

i=1

ŵ2
i

�2 +MMD(ŵ)2kĝ0 � g0k2

max

0

@ 1

n

nX

i=1

ŵ2
i

, MMD(ŵ)2

1

A · prediction error(ĝ0).

2. Minimize the length of the (conservative) level-↵ confidence interval

|CI(⌧̂DR)| =2z1�↵

2

vuut
nX

i=1

ŵ2
i

�2 + 2kĝ0 � g0kMMD(ŵ)

2

vuuutz21�↵

2

0

@ 1

n

nX

i=1

ŵ2
i

1

A+MMD(ŵ)2 ·
p

prediction error(ĝ0).

The last inequality is due to Cauchy-Schwarz.

Compared to selecting model according to some covariate balance measure as

suggested in Equation (6.25), the procedure described in this Section also takes the

bias-variance tradeo↵ into account.



Part III

INFERRING MULTIPLE

EFFECTS
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Chapter 8

A Common Confounding Problem

In the last Part of this thesis, the focus will be shifted to inferring multiple (e.g.

thousands of) causal e↵ects simultaneously. The single-e↵ect inference discussed in

Part II is built on the unconfoundedness (ignorability) assumption. However, it is

impossible to empirically validate this assumption because it involves joint distribu-

tion of the counterfactuals. This Part presents an alternative approach without the

unconfoundedness assumption. This approach requires multiple confounded e↵ects

to be revealed at the same and to be confounded in a structured way. When this is

the case, sparsity can be used to identify the true e↵ects in absence of ignorability.

Chapters in this Part are based on Wang, Zhao, Hastie, and Owen (2015) and Song

and Zhao (2016).

8.1 Linear model with latent variables

We start with a general linear model with latent variables and discuss what con-

founding means in this model. Let Y 2 Rn⇥p be an observed response matrix and

X 2 Rn⇥d be some predictors. Consider the following linear model between X and

Y :

Y
n⇥p

= X
n⇥d

↵T

p⇥d

+ Z
n⇥r

�T

p⇥r

+ E
n⇥p

. (8.1a)

88
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Here Z contains r unmeasured factors or latent variables and E is the noise matrix:

E ?? (X,Z), E ⇠ MN(0, I
n

,⌃). (8.1b)

In many applications (two detailed later in Sections 8.2 and 8.3), we are interested in

only certain components of ↵, so it is useful to di↵erential between primary variables

X1 2 Rn⇥d1 and nuisance variables X0 2 Rn⇥d0 satisfying X = (X0, X1) and d0+d1 =

d, and the coe�cient vector ↵ is correspondingly splitted as ↵ = (↵0,↵1). We are

only interested in inferring the primary coe�cients ↵1.

The latent variables Z play a crucial role in the inference of ↵1. To see this, let’s

first ignore Z and consider the standard approach that runs a least squares (OLS)

regression for each column of Y . This gives an unbiased estimate of the marginal

e↵ects of X. Are these marginal e↵ects the same as the ↵ in (8.1)? The answer

depends on the relationship between the confounders Z and the primary variable X1.

We assume a linear relationship

Z = X�T +W, W ⇠ MN(0, I
n

, I
r

), W ?? X. (8.1c)

If we plug (8.1c) into (8.1a), it is easy to see that the marginal e↵ects of X1 (let’s call

them ⌧1) and the primary e↵ects ↵1 satisfy

⌧ = ↵1 + ��1. (8.2)

Here we partition � 2 Rp⇥d into � = (�0, �1). Therefore ⌧1 = ↵1 if and only if

��1 = 0. This is the “unconfounded” case because the OLS estimate is unbiased for

↵1. Otherwise we shall call the problem “confounded”.

The parameters in the model equation (8.1) are ↵ 2 Rp⇥d, which contain the

primary e↵ects we are interested in, � 2 Rp⇥r, � 2 Rr⇥d, and ⌃ 2 Rp⇥p. We assume

⌃ is diagonal ⌃ = diag(�2
1, . . . , �

2
p

), so the noise of di↵erent outcome variables are

independent but possibly heteroskedastic.

In (8.1), X
i

is not required to be Gaussian or even continuous. For example, a

binary or categorical variable after normalization also meets this assumption. The
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parameter vector � measures how severely the data are confounded. For a more

intuitive interpretation, consider a simple case thatX = X1 2 Rn⇥1 is one dimensional

and an oracle procedure of estimating ↵ when the confounders Z in equation (8.1a)

are observed. The best linear unbiased estimator in this case is the ordinary least

squares (↵̂OLS
j

, �̂OLS
j

), whose variance is �2
j

Var(X
i

, Z
i

)�1/n. Using equation (8.1c), it

is easy to show that Var(↵̂OLS
j

) = (1+ k�k22)�2
j

/n and Cov(↵̂OLS
j

, ↵̂OLS
k

) = 0 for j 6= k.

In summary,

Var(↵̂OLS) =
1

n
(1 + k�k22)⌃. (8.3)

Notice that in the unconfounded linear model in which Z = 0, the variance of the OLS

estimator of ↵ is ⌃/n. Therefore, 1 + k�k22 represents the relative loss of e�ciency

when we add observed variables Z to the regression which are correlated with X. In

Section 9.3.2, we show that the oracle e�ciency (8.3) can be asymptotically achieved

even when Z is unobserved.

At this point the linear model (8.1) may seem a little abstract. In the following

two Sections, two distinct applications are described to motivate the confounding

problem in this model. Then Section 8.4 discusses the connection of model (8.1) to

the linear structural equation model described in Chapter 4.

8.2 Example 1: Batch e↵ects in microarray exper-

iments

Our first example is multiple hypothesis testing in genomics. In this example, the

response matrix Y is the gene expression levels. Each row of Y is a sample (patient

or cell) and each column of Y is a gene. Typically the primary variable X1 is some

condition or treatment indicator, and we want to know which genes are related to or

a↵ected by this treatment. The nuisance variable X0 usually includes an intercept

term.

In the simplest genomics testing, each column of Y is regressed on X = (X0, X1)

and a t-statistic corresponding to X1 is computed. Then we can apply a multiple test-

ing correction procedure (e.g. Bonferroni correction, Benjamini-Hochberg procedure)
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to control the familywise error rate (FWER) or false discovery rate (FDR). This is

the standard practice in many genomics studies.

Traditionally the tests are assumed to be independent of each other, so the multiple

testing errors can be easily controlled. Recent years have witnessed an extensive

investigation of multiple hypothesis, ranging from permutation tests (Tusher et al.,

2001, Korn et al., 2004), positive dependence (Benjamini and Yekutieli, 2001), weak

dependence (Storey et al., 2004, Clarke and Hall, 2009), accuracy calculation under

dependence (Owen, 2005, Efron, 2007) to mixture models (Efron, 2010, Sun and Cai,

2009) and latent factor models (Fan et al., 2012, Fan and Han, 2013, Lan and Du,

2014). Many of these works provide theoretical guarantees for FDR control under the

assumption that the individual test statistics are valid and may even be correlated.

Many of the listed references above can be understood through the unconfounded

scenario in (8.1) where � = 0. In this case, the OLS estimate of ↵1 is unbiased as

mentioned earlier, but its sample variance is larger than ⌃ (for simplicity we assume

⌃ = �2I is homoskedastic) due to the variability of the additional latent variables.

Therefore the regression t-statistics are less e�cient than the oracle case that Z is

known. More importantly, the statistics for di↵erent genes are dependent with each

other, so there is no guarantee that the Benjamini-Hochberg procedure can control

FDR. To correct for this, it is useful to include the latent variables in the analysis.

The surrogate variable analysis (SVA) of Leek and Storey (2007, 2008) takes this

approach and is quite successful in practice.

A more challenging problem is the confounded scenario, where � 6= 0 (more pre-

cisely �� 6= 0). In this case, the OLS estimate of ↵1 is biased and the so do the

corresponding t-statistics. Therefore this problem is fundamentally di↵erent from the

literature in the previous paragraph and poses an immediate threat to the repro-

ducibility of the discoveries.

To summarize the existing approaches to handle dependent/confounded multiple

hypothesis testing, Table 8.1 summarizes some related publications with more detailed

discussion in Section 9.6.

Next we use three real microarray datasets to illustrate the confounding problem.:

• The first dataset (Singh et al., 2011) tries to identify candidate genes associated
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Noise conditional on latent factors
Independent Correlated

Positive or weak
dependence

Benjamini and Yekutieli (2001)
Storey et al. (2004)

Clarke and Hall (2009)
Unconfounding

factors or
other structure

Friguet, Kloareg, and Causeur (2009)
Desai and Storey (2012)

Fan, Han, and Gu (2012)
Lan and Du (2014)

Discussed in Section 9.6.1

Confounding
factors

Leek and Storey (2007, 2008)
Gagnon-Bartsch and Speed (2012)

Gagnon-Bartsch, Jacob, and Speed (2013)
Sun, Zhang, and Owen (2012)
Studied in Sections 9.3 and 9.5

Discussed in Section 9.6.2

Discussed in Section 9.6.3

(future research)

Table 8.1: Selected literature in multiple hypothesis testing under dependence. The
categorization is partially subjective as some authors do not use exactly the same
terminology as us.

with the extent of emphysema and can be downloaded from the GEO database

(Series GSE22148). We preprocessed the data using the standard Robust Multi-

array Average (RMA) approach (Irizarry et al., 2003). The primary variable

of interest is the severity (moderate or severe) of the Chronic Obstructive Pul-

monary Disease (COPD). The dataset also include age, gender, batch and date

of the 143 sampled patients which are served as nuisance covariates.

• The second and third datasets are taken from Gagnon-Bartsch et al. (2013)

where they used them to compare RUV methods with other methods such

as SVA and LEAPP. The original scientific studies are Vawter et al. (2004)

and Blalock et al. (2004), respectively. The primary variable of interest is

gender in both datasets, though the original objective in Blalock et al. (2004)

is to identify genes associated with Alzheimer’s disease. Gagnon-Bartsch et al.

(2013) switch the primary variable to gender in order to have a gold standard:

the di↵erentially expressed genes should mostly come from or relate to the X or

Y chromosome. We follow their suggestion and use this standard to study the

performance of our RR estimator. In addition, as the first COPD dataset also
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contains gender information of the samples, we apply this suggestion and use

gender as the primary variable for the COPD data as a supplementary dataset.

Notice that the second dataset comes with batch and microarray platform labels

(possible confounders). However, this dataset has repeated samples from the

same patients but the individual information is lost.

In Figure 8.1, we plot the histogram of t-statistics of a simple linear model that

regresses the gene expression on the variable of interest (disease status for the first

and gender for the second and third datasets). The histograms clearly depart from

the approximate theoretical null distribution N(0, 1). The bulk of the test statistics

can be skewed (Figures 8.1a and 8.1b), overdispersed (Figure 8.1a), underdispersed

(Figures 8.1b and 8.1d), or noncentered (Figure 8.1c). In these cases, neither the

theoretical null N(0, 1), nor even the empirical null as shown in the histograms, look

appropriate for measuring significance. Schwartzman (2010) proved that a largely

overdispersed histogram like Figure 8.1a cannot be explained by correlation alone,

and is possibly due to the presence of confounding factors. The p-values of our test

of confounding (Section 9.4.2) in Table 10.1 indicate that all the three datasets su↵er

from confounding latent factors.

The most widely noted confounding variables are batch e↵ects. For example,

Leek et al. (2010) described three possible batch e↵ects: 1. a subset of experiments

was run on Monday and another set on Tuesday; 2. two technicians were responsible

for di↵erent subsets of the experiments; 3. two di↵erent lots of reagents, chips or

instruments were used. When batch e↵ects are correlated with an treatment/outcome

of interest, they become confounding variables and lead to incorrect conclusions.

Other common sources of confounding in gene expression profiling include sys-

tematic ancestry di↵erences (Price et al., 2006), environmental changes (Gasch et al.,

2000, Fare et al., 2003) and surgical manipulation (Lin et al., 2006). See Lazar et al.

(2013) for a survey. In many studies, especially for observational clinical research and

human expression data, the latent factors, either genetic or technical, are confounded

with primary variables of interest due to the observational nature of the studies and

heterogeneity of samples (Ransoho↵, 2005, Rhodes and Chinnaiyan, 2005). Similar

confounding problems also occur in other high-dimensional datasets such as brain
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(d) Dataset 2 after known batch correc-
tion.

Figure 8.1: Dataset 1 is the emphysema dataset (Singh et al., 2011). Dataset 2 and
3 are from Gagnon-Bartsch et al. (2013). Histograms of regression t-statistics in
three microarray studies show clear departure from the theoretical null distribution
N(0, 1). The mean and standard deviation of the normal approximation are obtained
from the median and median absolute deviation of the statistics. See Figure 10.4 for
the empirical distributions after confounder adjustment.
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imaging (Schwartzman et al., 2008) and metabonomics (Craig et al., 2006).

8.3 Example 2: Unknown risk factors in stock mar-

ket

Next we turn to an example in an entirely di↵erent field—finance. Since the capital

asset pricing model (CAPM) was first introduced in the 1960s (Markowitz, 1952,

Treynor, 1961, Sharpe, 1964, Lintner, 1965, Mossin, 1966), much of the empirical

research tries to find systemic risk factors that describe stock returns. This amounts

to find a linear model (8.1) for the stock returns without any unobserved variables. In

this example, the response matrix Y is the stock returns (rows are time and columns

are stocks) and the predictor X contains intercept and known systemic factors. As

of 2016, one of the most widely accepted models is the Fama-French-Carhart (FFC)

four factor model (Fama and French, 1992, Carhart, 1997), where the systemic risk

factors are: 1. Market return minus Risk free return (Mkt-Rf); 2. Small market

capitalization Minus Big (SMB); 3. High book-to-market ratio Minus Low (HML);

4. Momentum (MOM). In other words, the returns of a stock j is modeled by

Y
j

= ↵0 + ↵1XMkt-Rf + ↵2XSMB + ↵3XHML + ↵4XMOM + ✏
j

. (8.4)

This model explains over 90% of the diversified portfolios returns, which was a huge

success in financial economics. In this factor model, ↵0 is usually called the alpha or

risk-adjusted return of the stock. Since Fama (1970)’s introduction of e�cient mar-

ket hypothesis, many academics believe financial markets are too e�cient to allow for

repeatedly earning positive alpha, unless by chance. Nevertheless, the risk-adjusted

return is still widely used to evaluate mutual fund and portfolio manager performance.

In fact, and rather surprisingly, some recent research find that the majority of mutual

fund investors allocate their savings to funds who generated superior CAPM-alpha

(rather than the FFC-alpha) in the past (Barber et al., 2014, Berk and Van Binsber-

gen, 2016).

The Fama-French-Carhart model (8.4) belongs to our general linear model (8.1),
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where the primary variable X1 = 1, the nuisance variables

X0 = (XMkt-Rf, XSMB, XHML, XMOM),

and the latent variable Z is non-existent. Considering the vast amount of research

after Fama and French (1992) and Carhart (1997) that tries to identify additional

factors in (8.4), it is reasonable to postulate that (8.1) with latent factors may describe

the stock returns better. More importantly, it is very likely that the latent factors have

non-zero mean (i.e. “correlated” with the primary variable—intercept) and confound

the alpha. Intuitively, this means that the stock return may depend on other unknown

systemic risk factors which may have positive mean return. A mutual fund with large

positive CAPM-alpha or FFC-alpha may load on these unknown factors, and the true

risk-adjusted alpha could be much smaller or even negative.

8.4 Connection to linear structural equation model

When model (8.1) is interpreted as the linear structural equations model in Chapter 4,

our parameter of interest ↵ is indeed the direct causal e↵ect of X on Y (Pearl, 2009a).

In fact, Gagnon-Bartsch et al. (2013, Section 3.3) use all the heuristics in structural

equation models without realizing it. This partially motivates the proposal in the

next Chapter.

It is not necessary to make the structural assumptions to use the linear model

(8.1). For the microarray application described in Section 8.2, the model (8.1) is used

to describe the marginal screening procedure commonly applied in high throughput

data analysis. For the finance application described in (8.3), we are interested in the

intercept, a somewhat non-causal parameter. The linear model (8.1) provides by far

the clearest description of confounded e↵ects in these applications (see Section 9.6 for

some additional discussion). On the other hand, the asymptotic setting (n, p ! 1)

and sparsity assumptions in the next Chapter are newcomers in structural equation

modeling.

Notice that if the linear relationship between Z and X in (8.1c) is structural,



CHAPTER 8. A COMMON CONFOUNDING PROBLEM 97

the latent variables Z should be interpreted as mediators instead of confounders.

However, in the linear setting they are almost indistinguishable and do not a↵ect

the inference. The practical interpretation should depend on the application. In

microarray experiments, batch e↵ects are commonly regarded as mediators, but there

may exist other confounders as well.

The model (8.1) is also related to the common shock model that is widely used in

actuarial science and economics (Bai and Li, 2014, e.g.). In the common shock model,

both X and Y are modeled as linear functions of Z (Y also depends on X). When

the common shock model is assumed structural, the common shocks Z are actually

the confounders between X and Y .



Chapter 9

Cross-Sectional Regression After

Factor Analysis

This Chapter proposes a two-step procedure to solve the confounding problem intro-

duced in the last Chapter. The statistical method is implemented in an R package

cate (short for “confounder ddjusted testing and estimation”) that is available on

CRAN. The reader is referred to the supplementary file of Wang, Zhao, Hastie, and

Owen (2015) for technical proofs of the theorems in this Chapter.

9.1 Rotation

For simplicity, we start with the case that X = X1 2 Rn⇥1, so the only known

dependent variable is the primary variable of interest. In Section 9.5, the statistical

method and theory are extended to multiple regression, the original form in (8.1).

Following Sun et al. (2012), we introduce a transformation of the data to make the

confounding problem clearer. Consider the Householder rotation matrix QT 2 Rn⇥n

such that QTX = kXk2e1 = (kXk2, 0, 0, . . . , 0)T . Left-multiplying Y by QT , we get

Ỹ = QTY = kXk2e1↵T + Z̃�T + Ẽ, where

Z̃ = QTZ = QT (X�T +W ) = kXk2e1�T + W̃, (9.1)

98
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and W̃ = QTW
d

= W , Ẽ = QTE
d

= E. As a consequence, the first and the rest of the

rows of Ỹ are

Ỹ1 = kXk2↵T + Z̃1�
T + Ẽ1 ⇠ N(kXk2(↵ + ��)T , ��T + ⌃), (9.2)

Ỹ�1 = Z̃�1�
T + Ẽ�1 ⇠ MN(0, I

n�1, ��
T + ⌃). (9.3)

Here Ỹ1 is a 1 ⇥ p vector, Ỹ�1 is a (n � 1) ⇥ p matrix, and the distributions are

conditional on X.

The parameters ↵ and � only appear in equation (9.2) (a finite sample version

of equation (8.2)), so their inference (step 1 in our procedure) can be completely

separated from the inference of � and ⌃ (step 2 in our procedure). In fact, Ỹ1 ?? Ỹ�1|X
because Ẽ1 ?? Ẽ�1, so the two steps use mutually independent information. This in

turn greatly simplifies the theoretical analysis.

We intentionally use the symbol Q to resemble the QR decomposition of X. In

Section 9.5 we show how to use the QR decomposition to separate the primary e↵ects

from confounder and nuisance e↵ects when X has multiple columns. Using the same

notation, we discuss how SVA and RUV decouple the problem in a slightly di↵erent

manner in Section 9.6.2.

9.2 Identifiability

Let ✓ = (↵, �, �,⌃) be all the parameters and ⇥ be the parameter space. Without

any constraint, the model equation (8.1) is not identifiable. In this Section, we show

how to restrict the parameter space ⇥ to ensure identifiability.

9.2.1 Identifiability of �

Equation (9.3) is just the exploratory factor analysis model, thus � can be easily

identified up to some rotation under some mild conditions. Here we assume a classical

su�cient condition for the identification of � (Anderson and Rubin, 1956, Theorem

5.1)
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Lemma 9.1. Let ⇥ = ⇥0 be the parameter space such that

1. If any row of � is deleted, there remain two disjoint submatrices of � of rank r;

2. 1
p

�T⌃�1� is diagonal and the diagonal elements are distinct, positive, and ar-

ranged in decreasing order.

Then � and ⌃ are identifiable in the model equation (8.1).

In Lemma 9.1, condition (1) requires that p � 2r+1. Condition (1) identifies � up

to a rotation which is su�cient to identify ↵. To see this, we can reparameterize � and

� to �U and UT� using an r⇥ r orthogonal matrix U . This reparameterization does

not change the distribution of Ỹ1 in equation (9.2) if ↵ remains the same. Condition

(2) identifies the rotation uniquely but is not necessary for the theoretical analysis in

later sections.

9.2.2 Identifiability of ↵

The parameters ↵ and � cannot be identified from (9.2) because they have in total

p + r parameters while Ỹ1 is a length p vector. If we write P
�

and P
�

? as the

projection onto the column space and orthogonal space of � so that ↵ = P
�

↵+P
�

?↵,

it is impossible to identify P
�

↵ from equation (9.2).

This suggests that we need to further restrict the parameter space ⇥. We will

reduce the degrees of freedom by restricting at least r entries of ↵ to equal 0. We

consider two di↵erent su�cient conditions to identify ↵:

Negative control ⇥1 = {(↵, �, �,⌃) : ↵C = 0, rank(�C) = r} for a known negative

control set |C| � r.

Sparsity ⇥2(s) = {(↵, �, �,⌃) : k↵k0  b(p� s)/2c, rank(�C) = r, 8C ⇢ {1, . . . , p},
|C| = s} for some r  s  p.

Proposition 9.1. If ⇥ = ⇥0 \ ⇥1 or ⇥ = ⇥0 \ ⇥2(s) for some r  s  p, the

parameters ✓ = (↵, �, �,⌃) in the model equation (8.1) are identifiable.
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Proof. Since ⇥ ⇢ ⇥0, we know from Lemma 9.1 that � and ⌃ are identifiable.

Now consider two combinations of parameters ✓(1) = (↵(1), �, �(1),⌃) and ✓(2) =

(↵(2), �, �(2),⌃) both in the space ⇥ and inducing the same distribution in the model

equation (8.1), i.e. ↵(1) + ��(1) = ↵(2) + ��(2).

Let C be the set of indices such that ↵(1)
C = ↵(2)

C = 0. If ⇥ = ⇥0 \⇥1, we already

know |C| � r. If ⇥ = ⇥0 \⇥2(s), it is easy to show that |C| � s is also true because

both ↵(1) and ↵(2) have at most b(p � s)/2c nonzero entries. Along with the rank

constraint on �C, this implies that �C�(1) = �C�(2). However, the conditions in ⇥1

and ⇥2 ensure that �C has full rank, so �(1) = �(2) and hence ↵(1) = ↵(2).

We make four remarks regarding the identification conditions in Proposition 9.1:

Remark 1. The condition (2) in Lemma 9.1 that uniquely identifies � is not necessary

for the identification of �. This is because for any set |C| � r and any orthogonal

matrix U 2 Rr⇥r, we always have rank(�C) = rank(�C)U . Therefore � only needs to

be identified up to a rotation.

Remark 2. Almost all dense matrices of � 2 Rp⇥r satisfy the conditions. However,

for ⇥2(s) the sparsity of � allowed depends on the sparsity of �. The condition

⇥2(s) rules out some too sparse �. In this case, one may consider using confirmatory

factor analysis instead of exploratory factor analysis to model the relationship between

confounders and outcomes. For some recent identification results in confirmatory

factor analysis, see Grzebyk et al. (2004), Kuroki and Pearl (2014).

Remark 3. The maximum allowed k↵k0 in ⇥2, b(p� r)/2c, is exactly the maximum

breakdown point of a robust regression with p observations and r fixed predictors of

full rank (Maronna et al., 2006, Section 4.6). Indeed, we use robust regression to

estimate ↵ in this case in Section 9.3.2.

Remark 4. To the best of our knowledge, the only existing literature that explicitly

addresses the identifiability issue for the confounder problem is Sun (2011, Chapter

4.2), where the author gives su�cient conditions for local identifiability of ↵ by view-

ing equation (8.1a) as a “sparse plus low rank” matrix decomposition problem. See

Chandrasekaran et al. (2012, Section 3.3) for a more general discussion of the local

and global identifiability for this problem. Local identifiability refers to identifiability
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of the parameters in a neighborhood of the true values. In contrast, the conditions in

Proposition 9.1 ensure that ↵ is globally identifiable within the restricted parameter

space.

9.3 Estimation

We consider a two-step procedure, called cross-section regression (Section 9.3.2) after

factor analysis (Section 9.3.1), to make statistical inference for the model (8.1).

9.3.1 Estimating � and ⌃

The most popular approaches for factor analysis are principal component analysis

(PCA) and maximum likelihood (ML). Bai and Ng (2002) derived a class of esti-

mators of r by principal component analysis using various information criteria. The

estimators are consistent under Assumption 9.3 in this section and some additional

technical assumptions in Bai and Ng (2002). Due to this reason, we assume the num-

ber of confounding factors r is known in this section. See Owen and Wang (2016,

Section 3) for a comprehensive literature review of choosing r in practice.

We are most interested in the asymptotic behavior of factor analysis when both

n, p!1. In this case, PCA cannot consistently estimate the noise variance ⌃ (Bai

and Li, 2012). For theoretical analysis, we use the quasi maximum likelihood estimate

in Bai and Li (2012) to get �̂ and ⌃̂. This estimator is called “quasi”-MLE because

it treats the factors Z̃�1 as fixed quantities. Since the confounders Z in our model

equation (8.1) are random variables, we introduce a rotation matrix R 2 Rr⇥r and

let Z̃(0)
�1 = Z̃�1(R�1)T , �(0) = �R be the target factors and factor loadings that are

studied in Bai and Li (2012).

To make Z̃(0)
�1 and �(0) identifiable, Bai and Li (2012) consider five di↵erent iden-

tification conditions. However, the parameter of interest in model equation (8.1) is

↵ instead of � or �(0). As we have discussed in Section 9.2.2, we only need the

column space of � to estimate ↵, which gives us some flexibility of choosing the

identification condition. In our theoretical analysis we use the third condition (IC3)
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in Bai and Li (2012), which imposes the constraints that (n � 1)�1(Z̃(0)
�1)

T Z̃(0)
�1 = I

r

and p�1�̃(0)T��1�(0) is diagonal. Therefore, the rotation matrix R satisfies RRT =

(n� 1)�1Z̃T

�1Z̃�1.

The quasi-loglikelihood being maximized in Bai and Li (2012)is

� 1

2p
log det

⇣
�(0)(�(0))T + ⌃

⌘
� 1

2p
tr

⇢
S
h
�(0)(�(0))T + ⌃

i�1
�

(9.4)

where S is the sample covariance matrix of Ỹ�1.

The theoretical results in this section rely heavily on recent findings in Bai and

Li (2012). They use these three assumptions.

Assumption 9.1. The noise matrix E follows the matrix normal distribution E ⇠
MN(0, I

n

,⌃) and ⌃ is a diagonal matrix.

Assumption 9.2. There exists a positive constant D such that k�
j

k2  D, D�2 
�2
j

 D2 for all j, and the estimated variances �̂2
j

2 [D�2, D2] for all j.

Assumption 9.3. The limits lim
p!1 p�1�T⌃�1� and lim

p!1
P

p

j=1 �
�4
j

(�
j

⌦�
j

)(�T

j

⌦
�T

j

) exist and are positive definite matrices.

Bai and Li (2012) prove the consistency and asymptotic normality of �̂ and ⌃̂:

Lemma 9.2. Under Assumptions 9.1 to 9.3, the maximizers �̂ and ⌃̂ of the quasi-

loglikelihood (9.4) satisfy

p
n(�̂

j

� �(0)
j

)
d! N(0, �2

j

I
r

), and
p
n(�̂2

j

� �2
j

)
d! N(0, 2�4

j

).

Here we prove uniform convergence of the estimated factors and noise variances

based on the proof in Bai and Li (2012), which are needed to prove subsequently

results for ↵̂.

Lemma 9.3. Under Assumptions 9.1 to 9.3, for any fixed index set S with finite

cardinality, p
n(�̂

S

� �(0)
S

)
d! N(0,⌃

S

⌦ I
r

) (9.5)
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where ⌃
S

is the noise covariance matrix of the variables in S. Further, if there exists

k > 0 such that p/nk ! 0 when p!1, then

max
j=1,2,··· ,p

|�̂2
j

� �2
j

| = O
p

(
p

log p/n), max
j=1,2,··· ,p

|�̂
j

� �(0)
j

| = O
p

(
p
log p/n), and (9.6)

max
j=1,2,··· ,p

����̂
j

� �(0)
j

� 1

n� 1

nX

i=2

Z̃(0)
i

Ẽ
ij

��� = o
p

(n� 1
2 ). (9.7)

Remark 5. Assumption 9.2 is Assumption D from Bai and Li (2012). It requires that

the diagonal elements of the quasi-MLE ⌃̂ be uniformly bounded away from zero

and infinity. We would prefer boundedness to be a consequence of some assumptions

on the distribution of the data, but at present we are unaware of any other results

like Lemma 9.2 which do not use this assumption. In practice, the quasi-likelihood

problem (9.4) is commonly solved by the Expectation-Maximization (EM) algorithm.

Similar to Bai and Li (2012, 2014), we do not find it necessary to impose an upper or

lower bound for the parameters in the EM algorithm in the numerical experiments.

9.3.2 Estimating ↵ and �

The estimation of ↵ and � is based on the first row of the rotated outcome Ỹ1 in (9.2),

which can be rewritten as

Ỹ T

1 /kXk2 = ↵ + �(� + W̃1/kXk2) + ẼT

1 /kXk2 (9.8)

where W̃1 ⇠ N(0, I
p

) is from equation (9.1) and W̃1 is independent of Ẽ1 ⇠ N(0,⌃).

Note that Ỹ1/kXk2 is proportional to the sample covariance between Y and X.

To reduce variance, we choose to estimate (9.8) conditional on W̃1. Also, to use

the results in Lemma 9.2, we replace � by �(0). Then, we can rewrite (9.8) as

Ỹ T

1 /kXk2 = ↵ + �(0)�(0) + ẼT

1 /kXk2 (9.9)

where �(0) = �R and �(0) = R�1(� + W̃1/kXk2). Notice that the random R only

depends on Ỹ�1 and thus is independent of Ỹ1. In the proof of the results in this
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section, we first consider the estimation of ↵ for fixed W̃1, R and X, and then show

the asymptotic distribution of ↵̂ indeed does not depend on W̃1, R or X, and thus

also holds unconditionally.

All the methods described in this section first try to find a good estimator �̂, then

use ↵̂ = Ỹ T

1 /kXk2 � �̂�̂ to estimate ↵. Equation (9.9) can be viewed as a cross-

sectional regression, meaning the “observations” Ỹ1 correspond to the columns of the

original data matrix Y . In other words, we treat the marginal e↵ects of X for each

column of Y as the response, and try to explain them by the common pattern �̂ we

obtained from factor analysis. Whatever left unexplained is perhaps the real/direct

e↵ect of X.

Negative control scenario

If we know a set C such that ↵C = 0 (so ⇥ ⇢ ⇥1), then Ỹ1 can be correspondingly

separated into two parts:

Ỹ T

1,C/kXk2 = �(0)
C �(0) + ẼT

1,C/kXk2, and

Ỹ T

1,�C/kXk2 = ↵�C + �(0)
�C�

(0) + ẼT

1,�C/kXk2.
(9.10)

The number of negative controls |C|may grow as p!1. We impose an additional

assumption on the latent factors of the negative controls.

Assumption 9.4. lim
p!1 |C|�1�T

C ⌃
�1
C �C exists and is positive definite.

We consider the following negative control (NC) estimator where �(0) is estimated

by generalized least squares:

�̂NC = (�̂T

C ⌃̂
�1
C �̂C)�1�̂T

C ⌃̂
�1
C Ỹ T

1,C/kXk2, and (9.11)

↵̂NC
�C = Ỹ T

1,�C/kXk2 � �̂�C �̂NC. (9.12)

This estimator matches the RUV-4 estimator of Gagnon-Bartsch et al. (2013) except

that it uses quasi-maximum likelihood estimates of ⌃ and � instead of using PCA, and

generalized linear squares instead of ordinary linear squares regression. The details

are in Section 9.6.2.
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Our goal is to show consistency and asymptotic variance of ↵̂NC
�C . Let ⌃C represents

the noise covariance matrix of the variables in C. We then have

Theorem 9.1. Under Assumptions 9.1 to 9.4, if n, p ! 1 and p/nk ! 0 for some

k > 0, then for any fixed index set S with finite cardinality and S \ C = ;, we have

p
n(↵̂NC

S � ↵S)
d! N(0, (1 + k�k22)(⌃S +�S)) (9.13)

where �S = �S(�T

C ⌃
�1
C �C)�1�T

S .

If in addition, |C| ! 1, the minimum eigenvalue of �T

C ⌃
�1
C �C ! 1 by Assump-

tion 9.4, then the maximum entry of �S goes to 0. Therefore in this case

p
n(↵̂NC

S � ↵S)
d! N(0, (1 + k�k22)⌃S). (9.14)

The asymptotic variance in (9.14) is the same as the variance of the oracle least

squares in (8.3). Comparable oracle e�ciency statements can be found in the econo-

metrics literature (Bai and Ng, 2006, Wang et al., 2015). This is also the variance

used implicitly in RUV-4 as it treats the estimated Z as given when deriving test

statistics for ↵. When the number of negative controls is not too large, say |C| = 30,

the correction term �
S

is nontrivial and gives more accurate estimate of the variance

of ↵̂NC
�C . See Section 10.1 for more simulation results.

Sparsity scenario

When the zero indices in ↵ are unknown but sparse (so ⇥ ✓ ⇥2), the estimation of

↵ and � from Ỹ T

1 /kXk2 = ↵+ �(0)�(0) + ẼT

1 /kXk2 can be cast as a robust regression

by viewing Ỹ T

1 as observations and �(0) as design matrix. The nonzero entries in ↵

correspond to outliers in this linear regression.

The problem here has two nontrivial di↵erences compared to classical robust re-

gression. First, we expect some entries of ↵ to be nonzero, and our goal is to make

inference on the outliers; second, we don’t observe the design matrix �(0) but only

have its estimator �̂. In fact, if ↵ = 0 and �(0) is observed, the ordinary least squares

estimator of �(0) is unbiased and has variance of order 1/(np), because the noise in
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equation (9.8) has variance 1/n and there are p observations. Our main conclusion is

that �(0) can still be estimated very accurately given the two technical di�culties.

Given a robust loss function ⇢, we consider the following estimator:

�̂RR = argmin
pX

j=1

⇢

 
Ỹ1j/kXk2 � �̂T

j

�

�̂
j

!
, and (9.15)

↵̂RR = Ỹ1/kXk2 � �̂�̂RR. (9.16)

For a broad class of loss functions ⇢, estimating � by equation (9.15) is equivalent to

(�̂RR, ↵̃) = argmin
�,↵

pX

j=1

1

�̂2
j

(Ỹ1j/kXk2 � ↵j

� �̂T

j

�)2 + P
�

(↵), (9.17)

where P
�

(↵) is a penalty to promote sparsity of ↵ (She and Owen, 2011). However

↵̂RR is not identical to ↵̃, which is a sparse vector that does not have an asymptotic

normal distribution. The LEAPP algorithm (Sun et al., 2012) uses the form (9.17).

Replacing it by the robust regression equations (9.15) and (9.16) allows us to derive

significance tests of H0j : ↵j

= 0.

We assume a smooth loss ⇢ for the theoretical analysis:

Assumption 9.5. The penalty ⇢ : R ! [0,1) with ⇢(0) = 0. The function ⇢(x)

is non-increasing when x  0 and is non-decreasing when x > 0. The derivative

 = ⇢0 exists and | |  D for some D < 1. Furthermore, ⇢ is strongly convex in a

neighborhood of 0.

A su�cient condition for the local strong convexity is that  0 > 0 exists in a

neighborhood of 0. The next theorem establishes the consistency of �̂RR.

Theorem 9.2. Under Assumptions 9.1 to 9.3 and 9.5, if n, p ! 1, p/nk ! 0 for

some k > 0 and k↵k1/p! 0, then �̂RR p! �. As a consequence, for any j, ↵̂RR
j

p! ↵
j

.
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To derive the asymptotic distribution, we consider the estimating equation corre-

sponding to (9.15). By taking the derivative of (9.15), �̂RR satisfies

 
p,�̂,⌃̂(�̂

RR) =
1

p

pX

j=1

 

 
Ỹ1j/kXk2 � �̂T

j

�̂RR

�̂
j

!
�̂
j

/�̂
j

= 0. (9.18)

The next assumption is used to control the higher order term in a Taylor expansion

of  .

Assumption 9.6. The first two derivatives of  exist and both | 0(x)|  D and

| 00(x)|  D hold at all x for some D <1.

Examples of loss functions ⇢ that satisfy Assumptions 9.5 and 9.6 include smoothed

Huber loss and Tukey’s bisquare.

The next theorem gives the asymptotic distribution of ↵̂RR when the nonzero

entries of ↵ are sparse enough. The asymptotic variance of ↵̂RR is, again, the oracle

variance in (8.3).

Theorem 9.3. Under Assumptions 9.1 to 9.3, 9.5 and 9.6, if n, p!1, with p/nk !
0 for some k > 0 and k↵k1

p
n/p! 0, then

p
n(↵̂RR

S � ↵S)
d! N(0, (1 + k�k22)⌃S)

for any fixed index set S with finite cardinality.

If n/p ! 0, then a su�cient condition for k↵k1
p
n/p ! 0 in Theorem 9.3 is

k↵k1 = O(
p
p). If instead n/p! c 2 (0,1), then k↵k1 = o(

p
p) su�ces.

9.4 Hypotheses testing

In this section, we construct significance tests for ↵ and � based on the asymptotic

normal distributions in the previous section.
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9.4.1 Test of the primary e↵ects

We consider the asymptotic test for H0j : ↵
j

= 0, j = 1, . . . , p resulting from the

asymptotic distributions of ↵̂
j

derived in Theorems 9.1 and 9.3.

t
j

=
kXk2↵̂j

�̂
j

p
1 + k�̂k2 , j = 1, . . . , p (9.19)

Here we require |C|!1 for the NC estimator. The null hypothesis H0j is rejected at

level-q if |t
j

| > z
q/2 = ��1(1 � q/2) as usual, where � is the cumulative distribution

function of the standard normal.

The next theorem shows that the overall type-I error and the family-wise error rate

(FWER) can be asymptotically controlled by using the test statistics t
j

, j = 1, . . . , p.

Theorem 9.4. Let N
p

= {j|↵
j

= 0, j = 1, . . . , p} be all the true null hypotheses.

Under the assumptions of Theorem 9.1 or Theorem 9.3, |C|!1 for the NC scenario,

as n, p, |N
p

|!1
1

|N
p

|
X

j2N
p

I(|t
j

| > z
q/2)

p! q, and (9.20)

lim sup P
⇣ X

j2N
p

I(|t
j

| > z
q/(2p)) � 1

⌘
 q. (9.21)

Although the individual test is asymptotically valid as t
j

d! N(0, 1), Theorem 9.4 is

not a trivial corollary of the asymptotic normal distribution in Theorems 9.1 and 9.3.

This is because t
j

, j = 1, . . . , p are not independent for finite samples. The proof of

Theorem 9.4 investigates how the dependence of the test statistics diminishes when

n, p ! 1. The proof of Theorem 9.4 already requires a careful investigation of the

convergence of �̂ in Theorem 9.3. It is more cumbersome to prove FDR control using

our test statistics. In the simulations in Section 10.1 we show that FDR is usually

well controlled for the Benjamini-Hochberg procedure when the sample size is large

enough.

Remark 6. We find a calibration technique in Sun et al. (2012) very useful to improve

the type I error and FDR control for finite sample size. Because the asymptotic vari-

ance used in equation (9.19) is the variance of an oracle OLS estimator, when the
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sample size is not su�ciently large, the variance of �̂RR should be slightly larger than

this oracle variance. To correct for this inflation, one can use median absolute devia-

tion (MAD) with customary scaling to match the standard deviation for a Gaussian

distribution to estimate the empirical standard error of t
j

, j = 1, . . . , p and divide

t
j

by the estimated standard error. The performance of this empirical calibration is

studied in the simulations in Section 10.1.

9.4.2 Test of confounding

We also consider a significance test for H0,� : � = 0, under which the latent factors

are not confounding.

Theorem 9.5. Let the assumptions of Theorem 9.1 or Theorem 9.3 and |C| ! 1
for the NC scenario be given. Under the null hypothesis that � = 0, for �̂ = �̂NC in

(9.11) or �̂ = �̂RR in (9.15), we have

n · �̂T �̂ d! �2
r

where �2
r

is the chi-square distribution with r degree of freedom.

Therefore, the null hypothesis H0,� : � = 0 is rejected if n · �̂T �̂ > �2
r,q

where �2
r,q

is the upper-q quantile of �2
r

. This test, combined with exploratory factor analysis,

can be used as a diagnosis tool for practitioners to check whether the data gathering

process has any confounding factors that can bias the multiple hypothesis testing.

9.5 Extension to multiple regression

Next, the confounder adjustment procedure is extended the multiple regression prob-

lem originally proposed in Chapter 8. In this general setting, we observe in total

d = d0 + d1 predictors that can be separated into two groups:

1. X0: n ⇥ d0 nuisance covariates that we would like to include in the regression

model, and
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2. X1: n⇥ d1 primary variables whose e↵ects we want to study.

Leek and Storey (2008) consider the case d0 = 0 and d1 � 1 for SVA and Sun et al.

(2012) consider the case d0 � 0 and d1 = 1 for LEAPP. Here we study the confounder

adjusted multiple regression in full generality, for any d0 � 0 and d1 � 1.

In addition to the modeling assumptions in (8.1), it is necessary to consider the

joint distribution of X. We assume

0

@X0i

X1i

1

A are i.i.d. with E

2

64

0

@X0i

X1i

1

A

0

@X0i

X1i

1

A
T

3

75 = ⌃
X

, and ⌃
X

is invertible. (9.22)

The model does not specify means for X0i and X1i; we do not need them. The

parameters in this model are, for i = 0 or 1, ↵
i

2 Rp⇥d

i , � 2 Rp⇥r, ⌃
X

2 Rd⇥d, and

�
i

2 Rr⇥d

i . To clarify our purpose, we are primarily interested in estimating and

testing for the significance of ↵1.

For the multiple regression model, we again consider the rotation matrix QT that

is given by the QR decomposition
⇣
X0 X1

⌘
= QU where Q 2 Rn⇥n is an orthogonal

matrix and U is an upper triangular matrix of size n⇥ d. Therefore we have

QT

⇣
X0 X1

⌘
= U =

0

BB@

U00 U01

0 U11

0 0

1

CCA

where U00 is a d0 ⇥ d0 upper triangular matrix and U11 is a d1 ⇥ d1 upper triangular

matrix. Now let the rotated Y be

Ỹ = QTY =

0

BB@

Ỹ0

Ỹ1

Ỹ�1

1

CCA (9.23)
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where Ỹ0 is d0⇥p, Ỹ1 is d1⇥p and Ỹ�1 is (n�d)⇥p, then we can partition the model

into three parts: conditional on both X0 and X1 (hence U),

Ỹ0 = U00↵
T

0 + U01↵
T

1 + Z̃0�
T + Ẽ0, (9.24)

Ỹ1 = U11↵
T

1 + Z̃1�
T + Ẽ1 ⇠ MN(U11(↵1 + ��1)

T , I
d1 , ��

T + ⌃) (9.25)

Ỹ�1 = Z̃�1�
T + Ẽ�1 ⇠ MN(0, I

n�d

, ��T + ⌃) (9.26)

where Z̃ = QTZ and Ẽ = QTE
d

= E. Equation equation (9.24) corresponds to

the nuisance parameters ↵0 and is discarded according to the ancillary principle.

Equation equation (9.25) is the multivariate extension to equation (9.2) that is used

to estimate ↵1 and equation equation (9.26) plays the same role as equation (9.3) to

estimate � and ⌃.

We consider the asymptotics when n, p!1 and d, r are fixed and known. Since

d is fixed, the estimation of � is not di↵erent from the simple regression case and

we can use the maximum likelihood factor analysis described in Section 9.3.1. Under

Assumptions 9.1 to 9.3, the precision results of �̂ and ⌃̂ (Lemma 9.3) still hold.

Let ⌃�1
X

= ⌦ =
�
⌦00 ⌦01
⌦10 ⌦11

�
. In the proof of Theorems 9.1 and 9.3, we consider a

fixed sequence of X such that kXk2/
p
n! 1. Similarly, we have the following lemma

in the multiple regression scenario:

Lemma 9.4. As n!1, 1
n

UT

11U11
a.s.! ⌦�1

11 .

Similar to (9.8), we can rewrite (9.25) as

Ỹ T

1 U�T

11 = ↵1 + �(�1 + W̃1U
�T

11 ) + Ẽ1U
�T

11

where W̃1 ⇠ MN(0, I
d1 , Ip) is independent from Ẽ1. As in Section 9.3.2, we derive

statistical properties of the estimate of ↵1 for a fixed sequence of X, W̃1 and Z, which

also hold unconditionally. For simplicity, we assume that the negative controls are

a known set of variables C with ↵1,C = 0. We can then estimate each column of

�1 by applying the negative control (NC) or robust regression (RR) we discussed in
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Sections 9.3.2 and 9.3.2 to the corresponding row of Ỹ1U
�T

11 , and then estimate ↵1 by

↵̂1 = Ỹ T

1 U�T

11 � �̂�̂1.

Notice that Ẽ1U
�T

11 ⇠ MN
�
0,⌃, U�1

11 U
�T

11

�
. Thus the “samples” in the robust regres-

sion, which are actually the p variables in the original problem are still independent

within each column. Though the estimates of each column of �1 may be correlated,

we will show that the correlation won’t a↵ect inference on ↵1. As a result, we still get

asymptotic results similar to Theorem 9.3 for the multiple regression model (8.1):

Theorem 9.6. Under Assumptions 9.1 to 9.6, if n, p!1, with p/nk ! 0 for some

k > 0, and kvec(↵1)k1
p
n/p! 0, then for any fixed index set S with finite cardinality

|S|,
p
n(↵̂NC

1,S � ↵1,S)
d! MN(0|S|⇥k1 ,⌃S +�S ,⌦11 + �T1 �1), and (9.27)

p
n(↵̂RR

1,S � ↵1,S)
d! MN(0|S|⇥k1 ,⌃S ,⌦11 + �T1 �1) (9.28)

where �S is defined in Theorem 9.1.

As for the asymptotic e�ciency of this estimator, we again compare it to the oracle

OLS estimator of ↵1 which observes confounding variables Z in (8.1). In the multiple

regression model, we claim that ↵̂RR
1 still reaches the oracle asymptotic e�ciency. In

fact, let ↵ = (↵0,↵1, �). The oracle OLS estimator of ↵, ↵̂OLS, is unbiased and its

vectorization has variance V �1 ⌦ ⌃/n where

V =

0

@ ⌃
X

⌃
X

�T

�⌃
X

I
r

+ �⌃
X

�T

1

A , for � = (�0, �1).

By the block-wise matrix inversion formula, the top left d⇥d block of V �1 is ⌃�1
X

+�T�.

The variance of ↵̂OLS
1 only depends on the bottom right d1⇥d1 sub-block of this d⇥d

block, which is simply ⌦11+�T1 �1. Therefore ↵̂
OLS
1 is unbiased and its vectorization has

variance (⌦11+�T1 �1)⌦⌃/n, matching the asymptotic variance of ↵̂RR
1 in Theorem 9.6.
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9.6 Discussions

9.6.1 Confounding vs. unconfounding

The issue of multiple testing dependence arises because Z in the true model (8.1) is

unobserved. We have focused on the case where Z is confounded with the primary

variable. Some similar results were obtained earlier for the unconfounded case, cor-

responding to ↵ = 0 in our notation. For example, Lan and Du (2014) used a factor

model to improve the e�ciency of significance test of the regression intercepts. Jin

(2012), Li and Zhong (2014) developed more powerful procedures for testing � while

still controlling FDR under unconfounded dependence.

In another related work, Fan et al. (2012) imposed a factor structure on the

unconfounded test statistics, whereas this Chapter and the articles discussed later

in Section 9.6.2 assume a factor structure on the raw data. Fan et al. (2012) used

an approximate factor model to accurately estimate the false discovery proportion.

Their correction procedure also includes a step of robust regression. Nevertheless, it is

often di�cult to interpret the factor structure of the test statistics. In comparison, the

latent variables Z in our model (8.1), whether confounding or not, can be interpreted

as batch e↵ects, laboratory conditions, or other systematic bias. Such problems are

widely observed in genetics studies (see e.g. the review article by Leek et al., 2010).

As a final remark, some of the models and methods developed in the context of

unconfounded hypothesis testing may be useful for confounded problems as well. For

example, the relationship between Z and X needs not be linear as in (8.1c). In certain

applications, it may be more appropriate to use a time-series model (e.g. Sun and

Cai, 2009) or a mixture model (e.g. Efron, 2010).

9.6.2 Comparison with existing confounder adjustment meth-

ods

In this section we discuss in more detail how previous methods of confounder adjust-

ment, namely SVA, RUV-4 and LEAPP, fit in the framework equation (8.1).
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SVA

There are two versions of SVA: the reduced subset SVA (subset-SVA) of Leek and

Storey (2007) and the iteratively reweighted SVA (IRW-SVA) of Leek and Storey

(2008). Both of them can be interpreted as the two-step statistical procedure in the

framework equation (8.1). In the first step, SVA estimates the confounding factors by

applying PCA to the residual matrix (I �H
X

)Y where H
X

= X(XTX)�1XT is the

projection matrix of X. In contrast, we applied factor analysis to the rotated residual

matrix (QTY )�1, where Q comes from the QR decomposition of X in Section 9.5.

To see why these two approaches lead to the same estimate of �, we introduce the

block form of Q =
⇣
Q1 Q2

⌘
where Q1 2 Rn⇥d and Q2 2 Rn⇥(n�d). It is easy to show

that (QTY )�1 = QT

2 Y and (I �H
X

)Y = Q2QT

2 Y . Thus our rotated matrix (QTY )�1

decorrelates the residual matrix by left-multiplying by Q2 (because QT

2Q2 = I
n�d

).

Because (QT

2 Y )TQT

2 Y = (Q2QT

2 Y )TQ2QT

2 Y , (QTY )�1 and (I �H
X

)Y have the same

sample covariance matrix, they will yield the same factor loading estimate under PCA

and also under MLE. The main advantage of using the rotated matrix is theoretical:

the rotated residual matrices have independent rows.

Recall that the second step is to estimate ↵ based on the confounding factors esti-

mated in the first step. Because SVA doesn’t assume an explicit relationship between

the primary variable X and the confounders Z, it cannot use the regression equa-

tion (9.8) to estimate � (not even defined) and ↵. Instead, the two SVA algorithms

try to reconstruct the surrogate variables, which are essentially the confounders Z in

our framework. Assuming the true primary e↵ect ↵ is sparse, the subset-SVA algo-

rithm finds the outcome variables Y that have the smallest marginal correlation with

X and uses their principal scores as Z. Then, it computes the p-values by F-tests

comparing the linear regression models with and without Z. This procedure can eas-

ily fail because a small marginal correlation does not imply no real e↵ect of X due

to the confounding factors. For example, most of the marginal e↵ects in the gender

study in Figure 8.1b are very small, but after confounding adjustment we find some

are indeed significant (see Section 10.2).

The IRW-SVA algorithm modifies subset-SVA by using an iterative procedure in

the second step. The subset is chosen iteratively. At each step, IRW-SVA gives a
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weight to each outcome variable based on how likely it is that ↵
j

= 0, given the

current estimate of surrogate variables. These weights are then used in a weighted

PCA algorithm to update the estimated surrogate variables. IRW-SVAmay be related

to our robust regression estimator in Section 9.3.2 in the sense that an M-estimator

is commonly solved by Iteratively Reweighted Least Squares (IRLS) and the weights

also represents how likely the data point is an outlier. However, unlike IRLS, the

iteratively reweighted PCA algorithm used in IRW-SVA has no theoretical guarantee

of performance. It does not even have a guarantee of convergence. Some previous

literature (Sun et al., 2012, Gagnon-Bartsch et al., 2013) and our experiments in

Section 10.1 show that SVA is outperformed by the competitors in most cases and

performs slightly better when confounding is a minor issue.

RUV

Gagnon-Bartsch et al. (2013) derived RUV-4 estimator of ↵ via a sequence of heuristic

calculations. In Section 9.3.2, we derived an analytically more tractable estimator ↵̂NC

which is actually the same as RUV-4, with the only di↵erence being that we use MLE

instead of PCA to estimate the factors and GLS instead of OLS in equation (9.11).

To see why ↵̂NC is essentially the same as ↵̂RUV�4, in the first step RUV-4 used

residual matrix to estimate ↵ and Z, which yields the same estimate as using rotated

matrix (Section 9.6.2). In the second step, RUV-4 estimated ↵ via a regression on

X and Ẑ = Q
⇣
Z̃T

�1 �̂T
⌘
T

. The regression would estimate ↵ the same as ↵̂PCA in

the first step, thus estimate ↵ the same as using (9.12). Based on more heuristic

calculations, the authors claim the RUV-4 estimator has approximately the oracle

variance in Section 8.1. We rigorously prove this statement in Theorem 9.1 when

the number of negative controls is large and give a finite sample correction when the

negative controls are few. In Section 10.1 we show this correction is very useful to

control the type I error and FDR in simulations.
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LEAPP

We follow the two-step procedure and robust regression framework in LEAPP in this

Chapter, thus the test statistics tRR
j

are very similar to the test statistics tLEAPP
j

in

LEAPP. The di↵erence is that LEAPP uses the ⇥-IPOD algorithm of She and Owen

(2011) for outlier detection, which is robust against outliers at leverage points but

is not easy to analyze. Indeed Sun et al. (2012) replace it by the Dantzig selector

in their theoretical section. Here we use a classical M-estimator, which allows us to

study the theoretical properties more easily. In practice, LEAPP and RR estimator

usually produce very similar results; see Section 10.1 for a numerical comparison.

9.6.3 Inference when ⌃ is nondiagonal

Our analysis is based on the assumption that the noise covariance matrix ⌃ is di-

agonal, though in many applications, the researcher might suspect that the outcome

variables Y in model equation (8.1) are still correlated after conditioning on the la-

tent factors. Typical examples include gene regulatory networks (De La Fuente et al.,

2004) and cross-sectional panel data (Pesaran, 2004), where the variable dependence

sometimes cannot be fully explained by the latent factors or may simply require too

many of them. Bai and Li (2015) extend the theoretical results in Bai and Li (2012) to

approximate factor models allowing for weakly correlated noise. Approximate factor

models have also been discussed in Fan and Han (2013).



Chapter 10

Numerical Examples

10.1 Simulations

We have provided theoretical guarantees of confounder adjusting methods in various

settings and the asymptotic regime of n, p ! 1 (e.g. Theorems 9.1 to 9.4 and 9.6).

Now we use numerical simulations to verify these results and further study the finite

sample properties of our estimators and tests statistics.

The simulation data are generated from the single primary variable model (8.1).

More specifically, X
i

is a centered binary variable (X
i

+ 1)/2
i.i.d.⇠ Bernoulli(0.5), and

Y
i

, Z
i

are generated according to equation (8.1).

For the parameters in the model, the noise variances are generated by �2
j

i.i.d.⇠
InvGamma(3, 2), j = 1, . . . , p, and so E(�2

j

) = Var(�2
j

) = 1. We set each �
k

=

k�k2/
p
r equally for k = 1, 2, · · · , r where k�k22 is set to 0, 1, or 1/19, so the variance

of X
i

explained by the confounding factors is R2 = 0%, 5%, or 50%. The primary

e↵ect ↵ has independent components ↵
i

taking the values 3
p
1 + k↵k22 and 0 with

probability ⇡ = 0.05 and 1� ⇡ = 0.95, respectively, so the nonzero e↵ects are sparse

and have e↵ect size 3. This implies that the oracle estimator has power approximately

P(N(3, 1) > z0.025) = 0.85 to detect the signals at a significance level of 0.05. We set

the number of latent factors r to be either 2 or 10. For the latent factor loading

matrix �, we take � = �̃D where �̃ is a p ⇥ r orthogonal matrix sampled uniformly

from the Stiefel manifold V
r

(Rp), the set of all p ⇥ r orthogonal matrix. Based on

118
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Assumption 9.3, we set the latent factor strength D =
p
p · diag(d1, · · · , dr) where

d
k

= 3� 2(k� 1)/(r� 1) thus d1 to d
r

are distributed evenly inside the interval [3, 1].

As the number of factors r can be easily estimated for this strong factor setting (more

discussions can be found in Owen and Wang (2015)), we assume that the number r

of factors is known to all of the algorithms in this simulation.

We set p = 5000, n = 100 or 500 to mimic the data size of many genetic studies.

For the negative control scenario, we choose |C| = 30 negative controls at random

from the zero positions of ↵. We expect that negative control methods would perform

better with a larger value of |C| and worse with a smaller value. The choice |C| = 30

is around the size of the spike-in controls in many microarray experiments (Gagnon-

Bartsch and Speed, 2012). For the loss function in our sparsity scenario, we use

Tukey’s bisquare which is optimized via IRLS with an ordinary least-square fit as the

starting values of the coe�cients. Finally, each of the four combinations of n and r

is randomly repeated 100 times.

We compare the performance of nine di↵erent approaches. There are two baseline

methods: the “naive” method estimates ↵ by a linear regression of Y on just the

observed primary variable X and calculates p-values using the classical t-tests, while

the “oracle” method regresses Y on both X and the confounding variables Z as

described in Section 8.1. There are three methods in the RUV-4/negative controls

family: the RUV-4 method (Gagnon-Bartsch et al., 2013), our “NC” method which

computes test statistics using ↵̂NC and its variance estimate (1+k�̂k22)(⌃̂+�̂), and our

“NC-ASY” method which uses the same ↵̂NC but estimates its variance by (1+k�̂k22)⌃̂.
We compare four methods in the SVA/LEAPP/sparsity family: these are “IRW-SVA”

(Leek and Storey, 2008), “LEAPP” (Sun et al., 2012), the “LEAPP(RR)” method

which is our RR estimator using M-estimation at the robustness stage and computes

the test-statistics using (9.19), and the “LEAPP(RR-MAD)” method which uses the

median absolute deviation (MAD) of the test statistics in (9.19) to calibrate them.

(see Section 9.4)

To measure the performance of these methods, we report the type I error (Theo-

rem 9.4), power, false discovery proportion (FDP) and precision of hypotheses with

the smallest 100 p-values in the 100 simulations. For both the type I error and power,
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we set the significance level to be 0.05. For FDP, we use Benjamini-Hochberg proce-

dure with FDR controlled at 0.2. These metrics are plotted in Figures 10.1 to 10.3

under di↵erent settings of n and r.

First, from these figures, we see that the oracle method has exactly the same

type I error and FDP as specified, while the naive method and SVA fail drastically

when the latent variables are confounding. SVA performs performs better than the

naive method in terms of the precision of the smallest 100 p-values, but is still much

worse than other methods. Next, for the negative control scenario, as we only have

|C| = 30 negative controls, ignoring the inflated variance term �
S

in Theorem 9.1

will lead to overdispersed test statistics, and that’s why the type I error and FDP

of both NC-ASY and RUV-4 are much larger than the nominal level. By contrast,

the NC method correctly controls type I error and FDP by considering the variance

inflation, though as expected it loses some power compared with the oracle. For

the sparsity scenario, the “LEAPP(RR)” method performs as the asymptotic theory

predicted when n = 500, while when n = 100 the p-values seem a bit too small.

This is not surprising because the asymptotic oracle variance in Theorem 9.3 can be

optimistic when the sample size is not su�ciently large, as we discussed in Remark 6.

On the other hand, the methods which use empirical calibration for the variance of

test statistics, namely the original LEAPP and “LEAPP(RR-MAD)”, control both

FDP and type I error for data of small sample size in our simulations. The price for

the finite sample calibration is that it tends to be slightly conservative, resulting in a

loss of power to some extent.

In conclusion, the simulation results are consistent with our theoretical guarantees

when p is as large as 5000 and n is as large as 500. When n is small, the variance of

the test statistics will be larger than the asymptotic variance for the sparsity scenario

and we can use empirical calibrations (such as MAD) to adjust for the di↵erence.
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Figure 10.1: Compare the performance of nine di↵erent approaches in unconfounded
scenario. From left to right: naive regression ignoring the confounders (Naive), IRW-
SVA, negative control with finite sample correction (NC) in equation (9.13), negative
control with asymptotic oracle variance (NC-ASY) in equation (9.14), RUV-4, robust
regression (LEAPP(RR)), robust regression with calibration (LEAPP(RR-MAD)),
LEAPP, oracle regression which observes the confounders (Oracle). The error bars are
one standard deviation over 100 repeated simulations. The three dashed horizontal
lines from bottom to top are the nominal significance level, FDR level and oracle
power, respectively.
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Figure 10.2: Compare the performance of nine di↵erent approaches in the confounded
scenario (k�k22 = 1/19, i.e. the confounders explain 5% of the variation of X). From left
to right: naive regression ignoring the confounders (Naive), IRW-SVA, negative control
with finite sample correction (NC) in equation (9.13), negative control with asymptotic
oracle variance (NC-ASY) in equation (9.14), RUV-4, robust regression (LEAPP(RR)),
robust regression with calibration (LEAPP(RR-MAD)), LEAPP, oracle regression which
observes the confounders (Oracle). The error bars are one standard deviation over 100
repeated simulations. The three dashed horizontal lines from bottom to top are the nominal
significance level, FDR level and oracle power, respectively.
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Figure 10.3: Compare the performance of nine di↵erent approaches in the confounded
scenario (k�k22 = 1, i.e. the confounders explain 50% of the variation of X). From left
to right: naive regression ignoring the confounders (Naive), IRW-SVA, negative control
with finite sample correction (NC) in equation (9.13), negative control with asymptotic
oracle variance (NC-ASY) in equation (9.14), RUV-4, robust regression (LEAPP(RR)),
robust regression with calibration (LEAPP(RR-MAD)), LEAPP, oracle regression which
observes the confounders (Oracle). The error bars are one standard deviation over 100
repeated simulations. The three dashed horizontal lines from bottom to top are the nominal
significance level, FDR level and oracle power, respectively.
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10.2 Real data example: Batch e↵ects in microar-

ray experiments

In this section, we return to the three motivating real data examples in Section 8.2.

The main goal here is to demonstrate a practical procedure for confounder adjustment

and show that our asymptotic results are reasonably accurate in real data. In an open-

source R package cate (available on CRAN), we also provide the necessary tools to

carry out the procedure.

Recall that without the confounder adjustment, the distribution of the regression

t-statistics in these datasets can be skewed, noncentered, underdispersed, or overdis-

persed as shown in Figure 8.1. The adjustment method used here is the maximum

likelihood factor analysis described in Section 9.3.1 followed by the robust regression

(RR) method with Tukey’s bisquare loss described in Section 9.3.2. Since the true

number of confounders is unknown, we increase r from 1 to n/2 and study the empir-

ical performance. We report the results without empirical calibration for illustrative

purposes, though in practice we suggest using calibration for better control of type I

errors and FDP.

In Table 10.1 and Figure 10.4, we present the results after confounder adjustment

for the three datasets. We report two groups of summary statistics in Table 10.1:

the first group is several summary statistics of all the z-statistics computed using

equation (9.19), including the mean, median, standard deviation, median absolute

deviation (scaled for consistency of normal distribution), skewness, and the medcou-

ple. The medcouple (Brys et al., 2004)) is a robust measure of skewness. After

subtracting the median observation some positive and some negative values remain.

For any pair of values x1 � 0 and x2  0 with x1 + |x2| > 0 one can compute

(x1 � |x2|)/(x1 + |x2|). The medcouple is the median of all those ratios. The sec-

ond group of statistics has performance metrics to evaluate the e↵ectiveness of the

confounder adjustment. See the caption of Table 10.1 for more detail.

In all three datasets, the z-statistics become more centered at 0 and less skewed

as we include a few confounders in the model. Though the standard deviation (SD)
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r mean median sd mad skewness medc. #sig. p-value
0 -0.16 0.024 2.65 2.57 -0.104 -0.091 164 NA
1 -0.45 -0.39 2.85 2.52 -0.25 0.00074 1162 0.0057
2 0.012 -0.039 1.35 1.33 0.139 0.042 542 <1e-10
3 0.014 -0.05 1.43 1.41 0.169 0.048 552 <1e-10
5 -0.029 -0.11 1.52 1.48 0.236 0.057 647 <1e-10
7 -0.1 -0.14 1.42 1.35 0.109 0.027 837 <1e-10
10 -0.06 -0.085 1.13 1.12 0.103 0.022 506 <1e-10
20 -0.083 -0.095 1.2 1.19 0.0604 0.0095 479 <1e-10
33 -0.099 -0.11 1.33 1.3 0.0727 0.0056 579 <1e-10

40 -0.1 -0.12 1.43 1.4 0.0775 0.0072 585 <1e-10
50 -0.16 -0.17 1.58 1.53 0.0528 0.0032 678 <1e-10

(a) Dataset 1 (n = 143, p = 54675). Primary variable: severity of COPD.
r mean median sd mad skewness medc. #sig. X/Y top 100 p-value
0 0.11 0.043 0.36 0.237 2.99 0.2 1036 58 11 NA
1 -0.44 -0.47 1.06 1.04 0.688 0.035 108 20 20 0.74
2 -0.14 -0.15 1.15 1.13 0.601 0.015 113 21 21 0.31
3 0.013 0.012 1.13 1.08 0.795 -0.01 168 34 28 0.03
5 0.044 0.019 1.18 1.08 0.878 0.017 238 32 27 0.0083
7 0.03 0.012 1.26 1.15 0.784 0.0062 269 35 25 0.006

10 0.023 0.00066 1.36 1.24 0.661 0.011 270 38 27 0.019
15 0.049 0.022 1.46 1.31 0.584 0.012 296 36 29 0.00082
20 0.029 -0.0009 1.53 1.36 0.502 0.019 314 36 28 7.2e-07
25 0.048 0.012 1.68 1.48 0.452 0.026 354 37 27 1.1e-06

30 0.026 0.012 1.82 1.61 0.436 0.0068 337 40 27 8.7e-08
40 0.061 0.046 2.07 1.79 0.642 0.0028 363 41 27 7.7e-10

(b) Dataset 2 (n = 84, p = 12600). Primary variable: gender.
r mean median sd mad skewness medc. #sig. X/Y top 100 p-value
0 -1.8 -1.8 0.599 0.513 -3.46 0.082 418 39 20 NA
1 -0.55 -0.56 1.09 1.01 -1.53 0.01 261 29 23 0.00024
2 -0.2 -0.22 1.2 1.11 -0.99 0.014 320 38 22 0.00014
3 -0.096 -0.12 1.27 1.18 -0.844 0.017 311 42 25 0.00014
5 -0.33 -0.32 1.31 1.22 -1.29 -0.011 305 35 23 2.1e-07
7 -0.37 -0.36 1.46 1.36 -0.855 -0.0099 300 38 23 4.0e-07

11 -0.13 -0.12 1.51 1.36 -0.601 -0.0051 432 48 31 1.8e-09

15 -0.12 -0.13 1.83 1.62 -0.341 0.013 492 54 25 2.3e-08
20 -0.13 -0.14 2.61 2.23 -0.327 0.0045 613 50 26 4.0e-06

(c) Dataset 3 (n = 31, p = 22283). Primary variable: gender.

Table 10.1: Summary of the adjusted z-statistics. The first group is summary statistics
of the z-statistics before the empirical calibration. The second group is some performance
metrics after the empirical calibration, including total number of significant genes of p-value
less than 0.01 in Remark 6 (#sig.), number of the genes on X/Y chromosome that have
p-value less than 0.01 (X/Y), the number among the 100 most significant genes that are on
the X/Y chromosome (top 100) and the p-value of the confounding test in Section 9.4.2.
The bold row corresponds to the r selected by BCV (Figure 10.4).
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(b) Dataset 1: histogram.
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(c) Dataset 2: BCV selects r =
25.
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(d) Dataset 2: histogram.
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(f) Dataset 3: histogram.

Figure 10.4: Histograms of z-statistics after confounder adjustment (without calibration)
using the number of confounders r selected by bi-cross-validation.
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suggests overdispersed variance, the overdispersion will go away if we add MAD cal-

ibration as SD and MAD have similar values. The similarity between SD and MAD

values also indicates that the majority of statistics after confounder adjustment are

approximately normally distributed. Note that the medcouple values shrink towards

zero after adjustment, suggesting that skewness then only arises from small fraction

of the genes, which is in accordance with our assumptions that the primary e↵ects

should be sparse.

In practice, some latent factors may be too weak to meet Assumption 9.3 (i.e.

d
j

⌧ pp) , making it di�cult to choose an appropriate r. A practical way to pick

the number of confounders r with presence of heteroscedastic noise we investigate

here is the bi-cross-validation (BCV) method of Owen and Wang (2015), which uses

randomly held-out submatrices to estimate the mean squared error of reconstructing

factor loading matrix. It is shown in Owen and Wang (2015) that BCV outperforms

many existing methods in recovering the latent signal matrix and the number of

factors r, especially in high-dimensional datasets (n, p ! 1). In Figure 10.4, we

demonstrate the performance of BCV on these three datasets. The r selected by BCV

is respectively 33, 25 and 11 (Figures 10.4a, 10.4c and 10.4e), and they all result in the

presumed shape of z-statistics distribution (Figures 10.4b, 10.4d and 10.4f). For the

second and the third datasets where we have a gold standard, the r selected by BCV

has near optimal performance in selecting genes on the X/Y chromosome (columns 3

and 4 in Tables 10.1b and 10.1c). Another method we applied is proposed by Onatski

(2010) based on the empirical distribution of eigenvalues. This method estimates r

as 2, 9 and 3 respectively for the three datasets. Table 3 of Gagnon-Bartsch et al.

(2013) has the “top 100” values for RUV-4 on the second and third dataset. They

reported 26 for LEAPP, 28 for RUV-4, and 27 for SVA in the second dataset, and

27 for LEAPP, 31 for RUV-4, and 26 for SVA in the third dataset. Notice that the

precision of the top 100 significant genes is relatively stable when r is above certain

number. Intuitively, the factor analysis is applied to the residuals of Y on X and

the overestimated factors also have very small eigenvalues, thus they usually do not

change ↵̂ a lot. See also Gagnon-Bartsch et al. (2013) for more discussion on the

robustness of the negative control estimator to overestimating r.
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Lastly we want to point out that both the small sample size of the datasets and

presence of weak factors can result in overdispersed variance of the test statistics.

The BCV plots indicate presence of many weak factors in the first two datasets.

In the third dataset, the sample size n is only 31, so the adjustment result is not

ideal. Nevertheless, the empirical performance (e.g. number of X/Y genes in top 100)

suggests it is still beneficial to adjust for the confounders.

10.3 Real data example: Mutual fund selection

we use the Center for Research in Security Prices (CRSP) Survivorship Bias Free Mu-

tual Fund Database first complied in Carhart (1997). Our data set contains montly

return of the mutual funds from January 1991 to December 2014.1 To focus our analy-

sis on actively-managed open-ended U.S. domestic equity mutual funds, we eliminate

balanced, bond, money market, international, as well as index funds. We also ex-

cluded funds which never managed more than 5 million dollars. In total, this leaves

us with 17256 distinct mutual funds. Figure 10.5a shows the histogram of the number

of observations of these mutual funds.

The empirical exercise is implemented as follows. At the beginning of every year

from 1996 to 2013, we obtain a subsample of mutual funds whose monthly returns

are fully available in the last 5 years. This means the eligible funds are at least 5

years old and have no missing observations in the CRSP database. The number of

eligible mutual funds are plotted in Figure 10.5b. For every eligible fund, we model

the monthly returns (in total 60 observations) by augmenting the standard Fama-

French-Carhart four factor model (8.4) with r = 3 unobserved factors:

Y = ↵̃ + ↵1XMkt-Rf + ↵2XSMB + ↵3XHML + ↵4XMOM + �TZ + ✏
j

. (10.1)

Then we estimate the risk-adjusted return ↵̃0 using the robust regression method

1The CRSP data starts from 1962, but we concentrate on the period after 1991 bceause CRSP
reports monthly total net asset since 1991.
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(b) Number of eligible mutual funds (no
missing observations in the last 5 years).

Figure 10.5: Summary of the sample.

described in Chapter 9. Next, we compute the smart alpha of mutual fund by

SA ⌘ ↵̃

sd(↵1XMkt-Rf + ↵2XSMB + ↵3XHML + ↵4XMOM + �TZ)
. (10.2)

The eligible funds are sorted based on their smart alpha or CAPM alpha (model

(10.1) with only the first two terms), and then evaluated based on their returns in

the following year.

CAPM alpha is one of the most widely used skill measure of mutual fund managers

(Berk and Van Binsbergen, 2016, Barber et al., 2014). However, several empirical

studies (Kosowski et al., 2006, Fama and French, 2010) suggest that CAPM alpha

is not persistent, i.e. if we select the mutual funds with high CAPM based on their

performance in the last few years, these funds usually perform poorly later. Next we

shall show that the smart alpha we propose is a much more persistent measure of

mutual fund managers’ skill.
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Table 10.2: Rankings of Mutual Funds Sorted on 5-year Past CAPM Alpha
and Smart Alpha Mutual funds are ranked on January 1 each year from 1996 to
2015 based on their CAPM alpha and smart alpha over the prior five years. The smart
alpha is defined in (10.2). Row and column correspond to rankings based on CAPM
alpha and smart alpha, respectively. (0, 50%], (50%, 70%], (70%, 80%], (80%, 90%],
and (90%, 100%] indicate a fund’s CAPM alpha or smart alpha that belongs to bottom
five deciles, 5th to 7th deciles, 8th decile, 9th decile, and 10th decile, respectively.

CAPM-↵ \ smart-↵ (0,50%] (50%,70%] (70%,80%] (80%,90%] (90%,100%]
(0,50%] 36.97% 8.04% 2.64% 1.64% 0.70%

(50%,70%] 8.40% 5.95% 2.72% 2.08% 0.84%
(70%,80%] 2.54% 2.94% 1.77% 1.74% 1.02%
(80%,90%] 1.53% 2.10% 1.79% 2.46% 2.12%
(90%,100%] 0.55% 0.97% 1.09% 2.08% 5.34%

10.3.1 Mismatch of smart alpha and CAPM alpha

We first study how CAPM alpha and smart alpha of the same mutual fund di↵er.

Table 10.2 reports the results. A large number of mutual funds are ranked di↵erently

by CAPM alpha and smart alpha. For example, the last column of Table 10.2 indicates

that among the funds in top smart alpha decile, on average 0.70%/10% = 7% of them

have CAPM alpha below the median, (0.70%+0.84%+1.02%)/10% = 25.6% of them

have CAPM alpha below the top quintile, and (0.70%+0.84%+1.02%+2.12%)/10% =

46.6% of them have CAPM alpha below the top decile. In other words, a large

portion of the high smart alpha funds have produced relatively low CAPM alpha.

Similarly, the last row of Table 10.2 implies that among funds in top CAPM alpha

decile, on average 0.55%/10% = 5.5% of them have smart alpha below the median,

(0.55% + 0.97% + 1.09%)/10% = 26.1% of them have smart alpha below the top

quintile, and (0.55% + 0.97% + 1.09% + 2.08%)/10% = 46.6% of them have smart

alpha below the top decile.
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10.3.2 Persistence in smart-alpha-sorted mutual fund port-

folios

To set the stage, we firstly examine the performance of mutual fund portfolios based

on lagged return adjusted by market risk. i.e., CAPM alpha. This exerise is similar

to Carhart (1997) and is used to compare with portfolios sorted by smart alpha

later. The left panel of Table 10.3 reports the results. First, we find that the higher

CAPM alpha deciles have larger total net asset (TNA) at the portfolio formation

year. The top CAPM alpha decile manages $1303 million assets on average, which is

$800 million higher than AUM of the bottom five deciles. This pattern is consistent

with the conclusions in Berk and Van Binsbergen (2016), Barber et al. (2014) that

aggregate investors chase CAPM alpha so that the highest CAPM alpha funds attract

largest fund flows. On the other hand, the top CAPM alpha decile on average earns

1.0% less than the bottom five deciles in the next one year.

Next, we examine the performance of mutual fund portfolios based on their lagged

smart alpha. The results are reported in the right panel of Table 10.3. First, we find

smart alpha well predicts the fund’s future performance: funds with high lagged smart

alpha significantly outperform funds with low lagged smart alpha. For example, the

value-weighted net-of-fee returns of top smart alpha decile are higher than returns of

the bottom five smart alpha deciles by 2.0%.

Second, in contrast to the CAPM alpha sorted decile portfolios, fund portfo-

lios with higher smart alpha don’t necessarily have larger assets under management

(AUM). For example, among ten smart alpha portfolios, the 7th decile has the largest

AUM, which is $ 200 million higher than AUM of the top smart alpha decile. When

comparing to the top CAPM alpha decile, the top decile smart alpha funds manage

assets that are on average 13% lower. This indicates that funds with superior smart

alpha don’t necessarily attract more fund flows from investors.

We also study persistence of fund performance at longer horizon. Figure 10.6

shows the average excess return of each decile portfolio in the first five years after

funds are ranked based on CAPM alpha and smart alpha, respectively. The top

smart alpha decile maintains a persistently higher mean return a full five years after
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Portfolio
CAPM Alpha Sorted Smart Alpha Sorted

TNA Ret SR CAPM-↵ FFC-↵ TNA Ret SR CAPM-↵ FFC-↵

1 (low) 251.0 6.1 32.5 -2.02 -1.47 239.2 5.6 36.2 -1.23 -1.72**
(-1.55) (-1.24) (-1.07) (-2.15)

2 397.0 6.4 34.9 -1.58 -1.35 352.4 6.0 36.3 -1.38** -1.50**
(-1.38) (-1.47) (-2.30) (-2.53)

3 475.9 6.7 40.5 -0.64 -0.67 523.6 5.4 33.0 -1.90*** -1.93***
(-0.81) (-0.84) (-3.32) (-3.53)

4 592.0 6.4 39.0 -0.92 -0.94 706.7 5.8 36.7 -1.23* -1.06
(-1.55) (-1.59) (-1.76) (-1.58)

5 769.8 6.6 42.0 -0.36 -0.51 739.1 5.3 33.6 -1.74*** -1.94***
(-0.48) (-0.74) (-2.93) (-3.48)

6 964.5 6.8 44.4 -0.03 -0.19 964.9 6.1 38.1 -1.07** -1.16**
(-0.06) (-0.35) (-2.19) (-2.37)

7 1030.1 6.2 40.7 -0.62 -0.83 1311.7 5.8 37.5 -1.13** -1.18**
(-1.17) (-1.62) (-2.01) (-2.49)

8 1103.9 6.7 43.9 -0.09 -0.43 1065.9 6.5 41.9 -0.44 -0.78
(-0.14) (-0.76) (-0.74) (-1.36)

9 1235.8 6.9 39.2 0.28 -0.52 1084.9 7.0 44.2 -0.02 -0.43
(0.33) (-0.52) (-0.02) (-0.61)

10 (high) 1303.9 5.5 32.2 -1.88 -2.11* 1056.2 7.6 48.7 0.73 0.51
(-1.59) (-1.86) (0.84) (0.61)

Top 5% 1469.0 4.4 23.9 -3.12* -3.53** 1056.2 8.0 51.8 1.37 1.08
(-1.70) (-2.05) (1.21) (0.98)

10-1 1052.9 -0.6 -8.3 0.14 -0.63 924.9 2.1 47.3 1.97** 2.24**
(0.08) (-0.38) (1.99) (2.30)

10-1:5 803.7 -1.0 -16.8 -0.90 -1.21 645.1 2.0 56.4 2.23*** 2.06***
(-0.69) (-1.21) (2.78) (2.72)

Table 10.3: Portfolios of Mutual Funds Formed on Lagged 5-year CAPM
Alpha and Lagged 5-year Smart Alpha. Mutual funds are sorted on January 1
each year into value-weighted portfolios based on their CAPM alpha and smart alpha
over the prior five years, respectively. Funds with the highest past alpha comprise
decile 10 and funds with the lowest past five-year alpha comprise decile 1. TNA is
total asset under management at the time of portfolio formation; Ret is the annualized
monthly return of fund portfolio; SR is the Sharpe ratio; CAPM-↵ and FFC-↵ are the
monthly excess return on the market portfolio MKT and the four factor portfolios
MKT ,SMB, HML, and UMD defined in Carhart (1997). t-statistics are reported
in parentheses. ***,**, and * denote statistical significance at 1, 5, and 10% level.
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the portfolio is initially formed. Besides, the ranks are quite persistent over the next

five years except for the lowest decile. Apparently, a relatively high smart alpha is

a reasonably good indicator of the relative long-term expected return on a mutual

fund. On the contrary, for CAPM alpha deciles, the mean returns of the ten deciles

converge after one year and the top CAPM alpha decile earns lowest average return

in the next year.

10.3.3 Top-ranked mutual funds

Roughly speaking, we can categorize the mutual funds in two ways: skilled funds

(high smart alpha) vs. unskilled funds (low smart alpha), and appealing funds (high

CAPM alpha) vs. unappealing funds (low CAPM alpha). Based on this, we can

classifies top-ranked mutual funds (either by smart alpha or CAPM alpha) into three

types:

1. Overestimated: those funds with high CAPM alpha but low smart alpha.

2. Skilled: those funds with high CAPM alpha and high smart alpha.

3. Underestimated: those funds with high smart alpha but low CAPM alpha.

Table 10.4 shows the performance of each of these three types of funds. For

example, if we only consider the top decile as high and all the other nine deciles as

low (Panel A), overestimated funds have mean return 5.1%, skilled funds have mean

return 6.2%, and underestimated funds have mean return 9.1%. The order remains

when we change the definition of high alpha to two deciles (Panel B) or three deciles

(Panel C). The most probable reason of phenomenon is the irrational cash flow into

the high CAPM alpha funds. For an economic-theory explanation and more results,

we refer the reader to Song and Zhao (2016).
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(d) CAPM alpha: weighted by value.

Figure 10.6: Post-formation returns on portfolios of mutual funds sorted on

lagged CAPM alpha and smart alpha. In each year from 1996 to 2015, funds are ranked
into value-weight and equal weight decile portfolios based on lagged CAPM alpha and smart
alpha. The lines in the group represent the excess returns on the decile portfolios in the
year subsequent to the formation year and in each of the next five years after formation.
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TNA Proportion
One-year Two-year

ExRet CAPM-↵ FFC-↵ ExRet CAPM-↵ FFC-↵

Panel A: Top Decile

CAPM \ Smart 1259.3 4.66% 5.1 -2.75 -2.98 3.5 -3.83 -3.98

(-1.96) (-2.06) (-2.35) (-2.54)

CAPM \ Smart 1279.5 5.34% 6.2 -0.86 -1.16 5.2 -1.57 -1.85

(-0.69) (-1.00) (-1.21) (-1.51)

Smart \ CAPM 1097.5 4.66% 9.1 2.42 2.00 8.7 2.15 2.03

(2.41) (1.97) (2.20) (2.03)

Panel B: Top Two Deciles

CAPM \ Smart 1157.1 8.00% 5.5 -1.68 -2.24 3.4 -3.50 -3.81

(-1.49) (-2.29) (-2.76) (-3.15)

CAPM \ Smart 1260.4 12.00% 6.9 0.05 -0.41 6.0 -0.70 -1.06

(0.05) (-0.49) (-0.74) (-1.20)

Smart \ CAPM 937.9 8.00% 7.8 0.72 0.70 8.8 2.09 1.83

(0.78) (0.76) (1.99) (1.71)

Panel C: Top Three Deciles

CAPM \ Smart 1053.1 10.59% 6.3 -0.66 -1.40 5.0 -1.62 -2.15

(-0.68) (-1.63) (-1.60) (-2.36)

CAPM \ Smart 1242.8 19.41% 6.9 0.08 -0.33 6.1 -0.51 -0.93

(0.10) (-0.47) (-0.63) (-1.24)

Smart \ CAPM 851.3 10.59% 7.1 -0.11 -0.13 8.5 1.51 1.35

(-0.13) (-0.15) (1.51) (1.36)

Table 10.4: Post-formation returns on mutual funds sorted on 5-year past CAPM alpha

and 5-year past smart alpha. Mutual funds are ranked on January 1 each year from 1994 to 2015
based on their CAPM alpha and smart alpha over the prior five years. Panel A, B, and C select top
10%, top 20%, and top 30% CAPM alpha funds and smart alpha funds, respectively. In each panel,
CAPM \ Smart includes funds that have CAPM alpha in the top group and smart alpha out of the
top group; CAPM \ Smart includes funds that have both CAPM alpha and smart alpha in the top
group; Smart \ CAPM includes funds that have smart alpha in the top group and CAPM alpha
out of the top group. TNA is total asset under management at the time of portfolio formation (in
millions); ExRet is the annualized monthly return of value-weighted portfolio; CAPM-↵ and FFC-↵
are the monthly excess return within the next one year and two years on the market portfolio MKT
and the four factor portfolios MKT ,SMB, HML, and UMD defined in Carhart (1997).
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